STA 291

Lecture 19

- Exam II Next Tuesday 5-7pm
- Memorial Hall (Same place as exam I)
- Makeup Exam 7:15pm - 9:15pm
- Location CB 234

Exam II Covers ...

- Chapter 9
- 10.1; 10.2; 10.3; 10.4; 10.6
- 12.1; 12.2; 12.3; 12.4
- Formula sheet; normal table; t-table will be provided.

Confidence Interval

- A confidence interval for an unknown parameter is a range of numbers that is \qquad likely to cover (or capture) the true parameter. (for us, parameter is either p or mu)
- The probability that the confidence interval captures the true parameter is called the confidence level.
- The confidence level is a chosen number close to 1 , usually $95 \%, 90 \%$ or 99%
- Why not chose confidence level 100% ?

Confidence interval for mu

- For continuous type data, often the parameter is the population mean, mu.
- Chap. 12.1-12.4

Chap. 12.1 - 12.4:

Confidence Interval for mu

- The random interval between

$$
\bar{X}-1.96 \frac{\sigma}{\sqrt{n}} \quad \text { and } \quad \bar{X}+1.96 \frac{\sigma}{\sqrt{n}}
$$

Will capture the population mean, mu, with 95\% probability

- This is a confidence statement, and the interval is called a 95\% confidence interval
- We need to know sigma. $)^{(\cdot)}$
- confidence level $0.90, \leftrightarrow \quad z_{\alpha / 2}=1.645$
- confidence level $0.95 \longleftrightarrow \quad z_{\alpha / 2}=1.96$
- confidence level $0.99 \longleftrightarrow \quad Z_{\alpha / 2} \quad=2.575$
- Where do these numbers come from? (same number as the confidence interval for p).
- They are from normal table/web

"Student" t - adjustment

- If sigma is unknown, (often the case) we \qquad may replace it by s (the sample SD) but the value Z (for example $z=1.96$) needs
\qquad adjustment to take into account of extra variability introduced by s \qquad
\qquad
- There is another table to look up: t-table or another applet
- http://www.socr.ucla.edu/Applets.dir/Normal T Chi2 F Tables.htm
\qquad

STA 291 - Lecture 19 \qquad

William Gosset "student" for the t table works for Guinness
Brewery 103 years ago

Degrees of freedom, $\mathrm{n}-1$

- Student t - table is keyed by the df degrees of freedom
- Entries with infinite degrees of freedom is same as Normal table
- When degrees of freedom is over 200 , the difference to normal is very small
- With the t-adjustment, we do not require \qquad a large sample size n.
- Sample size n can be 25,18 or 100 etc.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Confidence Intervals

- Confidence Interval Applet

Example: Confidence Interval

- Example: Find and interpret the 95% confidence interval for the population mean, if the sample mean is 70 and the pop. standard deviation is 12 , based on a sample of size $n=100$

First we compute $\quad \frac{\sigma}{\sqrt{n}}=12 / 10=1.2$,
$1.96 \times 1.2=2.352 \quad 70+2.352]=[67.648,72.352]$
$[70-2.352, \quad 70+$

Example: Confidence Interval

- Now suppose the pop. standard deviation is unknown (often the case). Based on a sample of size $n=100$, Suppose we also compute the $s=$ 12.6 (in addition to sample mean $=70$)

First we compute $\quad \frac{s}{\sqrt{n}} \quad=12.6 / 10=1.26$,
From ttable $\quad 1.984 \times 1.26=2.4998$
$[70-2.4998, \quad 70+2.4998]=[67.5002,72.4998]$

Confidence Interval: Interpretation

- "Probability" means that "in the long run, 95% of these intervals would contain the parameter"
i.e. If we repeatedly took random samples using the same method, then, in the long run, in 95\% of the cases, the confidence interval will cover the true unknown parameter
- For one given sample, we do not know whether the confidence interval covers the true parameter or not. (unless you know the parameter)
- The 95% probability only refers to the method that we use, but not to the individual sample

Confidence Interval: Interpretation

- To avoid the misleading word "probability", we say:
"We are 95\% confident that the interval will contain the true population mean"
- Wrong statement:
"With 95\% probability, the population mean is in the interval from 3.5 to 5.2 " \qquad
Wrong statement: " 95% of all the future observations will fall within 3.5 to $5.2^{\prime \prime}$. \qquad

Confidence Interval

- If we change the confidence level from 0.95 to 0.99 , the confidence interval changes

Increasing the probability that the interval contains the true parameter requires increasing the length of the interval

- In order to achieve 100% probability to cover the true parameter, we would have to increase the length of the interval to infinite -- that would not be informative, not useful.
- There is a tradeoff between length of confidence interval and coverage probability. Ideally, we want short length and high coverage probability (high confidence level). STA 291 - Lecture 19

Different Confidence Coefficients

- In general, a confidence interval for the mean, μ has the form \qquad

$$
\bar{X} \pm z \cdot \frac{\sigma}{\sqrt{n}}
$$

- Where z is chosen such that the probability under a normal curve within z standard deviations equals the confidence level

Different Confidence Coefficients

- We can use normal Table to construct confidence intervals for other confidence levels
- For example, there is 99% probability of a normal distribution within 2.575 standard deviations of the mean \qquad
- A 99\% confidence interval for μ is

$$
\bar{X} \pm 2.575 \cdot \frac{\sigma}{\sqrt{n}}
$$

Error Probability

- The error probability (a) is the probability that a confidence interval does not contain the population parameter -- (missing the target)
- For a 95% confidence interval, the error probability $\mathrm{a}=0.05$
- $a=1$ - confidence level or confidence level = $1-\mathrm{a}$

Different Confidence Levels

Confidence level	Errora	$\mathrm{a} / 2$	z
90%	0.1		
95%	0.05	0.025	1.96
98%			
99%			2.575
99.74%			3
			1.5

- If a 95% confidence interval for the \qquad population mean, turns out to be [67.4, 73.6]

What will be the confidence level of the interval [67.8, 73.2]?

Interpretation of Confidence Interval

- If you calculated a 95% confidence interval, say from 10 to 14 , The true parameter is either in the interval from 10 to 14, or not - we just don't know it (unless we knew the parameter).
- The 95% probability refers to probability before we do it: (before Joe shoot the free throw, I say he has 77% hitting the hoop. But after he did it, he either hit it or missed it).

Interpretation of Confidence Interval, II

- If you repeatedly calculate confidence intervals with the same method, then 95\% of them will contain the true parameter, -(using the long run average interpretation of the probability.)

Choice of sample size

- In order to achieve a margin of error smaller than B, (with confidence level 95%), how large the sample size n must we get?

Choice of Sample Size

$$
\bar{X} \pm z \cdot \frac{\sigma}{\sqrt{n}}=\bar{X} \pm B
$$

- So far, we have calculated confidence intervals starting with z, n and σ
- These three numbers determine the error bound B of the confidence interval
- Now we reverse the equation:
- We specify a desired error bound B
- Given z and σ, we can find the minimal sample size n needed for achieve this.

Choice of Sample Size

- From last page, we have

$$
z \cdot \frac{\sigma}{\sqrt{n}}=B
$$

- Mathematically, we need to solve the above equation for n
- The result is

$$
n=\sigma^{2} \cdot\left(\frac{z}{B}\right)^{2}
$$

Example

- About how large a sample would have been adequate if we merely needed to estimate the mean to within 0.5 , with 95\% confidence?
- (assume

$$
\sigma=5
$$

- $B=0.5, \quad z=1.96$
- Plug into the formula: $n=5^{2} \cdot\left(\frac{1.96}{0.5}\right)^{2}=384.16$

Choice of sample size

- The most lazy way to do it is to guess a sample size n and
- Compute B, if B not small enough, then increase n ;
- If B too small, then decrease n
- For the confidence interval for p

$$
z \cdot \frac{\sqrt{p(1-p)}}{\sqrt{n}}=B
$$

\qquad
\qquad
\qquad

- Often, we need to put in a rough guess of
\qquad p (called pilot value). Or, conservatively put $p=0.5$
- Suppose we want a 95% confidence error \qquad bound $B=3 \%$ (margin of error $+-3 \%$).
Suppose we do not have a pilot p value, so use $p=0.5$

So, $\quad n=0.5(1-0.5)[1.96 / 0.03]^{\wedge} 2=1067.11$

Attendance Survey Question

- On a 4"x6" index card
-Please write down your name and section number
-Today's Question:
Which t-table you like better?

Facts About Confidence Intervals I

- The width of a confidence interval - Increases as the confidence level increases - Increases as the error probability decreases - Increases as the standard error increases - Decreases as the sample size n increases
- www.webchem.sci.ru.nl/Stat/index.html

Try to teach us confidence interval but the interpretation is all wrong $*$

- For Bernoulli type data, the future observations NEVER fall into the confidence interval

