STA 291 Lecture 19

- Exam II Next Tuesday 5-7pm
- Memorial Hall (Same place as exam I)
- Makeup Exam 7:15pm 9:15pm
- Location CB 234

STA 291 - Lecture 19

Exam II Covers ...

- Chapter 9
- 10.1; 10.2; 10.3; 10.4; 10.6
- 12.1; 12.2; 12.3; 12.4
- Formula sheet; normal table; t-table will be provided.

STA 291 - Lecture 19

2

Confidence Interval

- A confidence interval for an unknown parameter is a range of numbers that is likely to cover (or capture) the true parameter. (for us, parameter is either p or mu)
- The probability that the confidence interval captures the true parameter is called the confidence level.
- The confidence level is a chosen number close to 1, usually 95%, 90% or 99%

STA 291 - Lecture 19

	ı	
•		

Why not chose confidence level 100%?	
willy flot chose confidence level 10078:	
STA 291 - Lecture 19 4	,
Confidence interval for mu	

• For continuous type data, often the parameter is the population mean, mu.

• Chap. 12.1 – 12.4

STA 291 - Lecture 19

1 - Lecture 13

Chap. 12.1 – 12.4: Confidence Interval for mu

• The *random* interval between

$$\overline{X} - 1.96 \frac{\mathbf{S}}{\sqrt{n}}$$
 and $\overline{X} + 1.96 \frac{\mathbf{S}}{\sqrt{n}}$

Will capture the population mean, mu, with 95% probability

 This is a confidence statement, and the interval is called a 95% confidence interval

• We need to know sigma. 🗵

STA 291 - Lecture 19

•	confidence level 0.90,	←→	$Z_{a/2}$	=1.645
---	------------------------	-----------	-----------	--------

- confidence level 0.95 \longleftrightarrow $Z_{a/2}$ =1.96
- confidence level 0.99 $\leftarrow \rightarrow$ $Z_{a/2} = 2.575$
- Where do these numbers come from? (same number as the confidence interval for p).
- They are from normal table/web

STA 291 - Lecture 19

"Student" t - adjustment

- If sigma is unknown, (often the case) we may replace it by s (the sample SD) but the value Z (for example z=1.96) needs adjustment to take into account of extra variability introduced by s
- There is another table to look up: t-table or another applet
- http://www.socr.ucla.edu/Applets.dir/Normal T Chi2 F Tables.htm

STA 291 - Lecture 19

William Gosset "student" for the table

> works for Guinness Brewery 103 years ago

STA 291 - Lecture 19

Degrees of freedom, n-1

- Student t table is keyed by the df degrees of freedom
- Entries with infinite degrees of freedom is same as Normal table
- When degrees of freedom is over 200, the difference to normal is very small

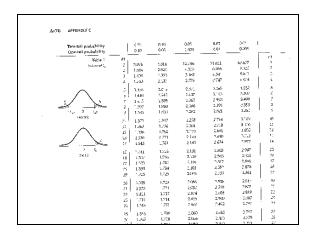
STA 291 - Lecture 19

10

- With the t-adjustment, we do not require a large sample size n.
- Sample size n can be 25, 18 or 100 etc.

STA 291 - Lecture 19

t Table											
cum, prob	£.50	1.75	£.00	1.05	£.90	2.95	2,975	7.99	7,995	E.999	7,996
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.985	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6 7 8 9	0.000	0.718	0.906	1.134	1.440	1.895	2.447 2.385	3.143 2.998	3.707	4,785	5.959
ź	0.000	0.711	0.889	1,119	1,415	1.880	2.300	2.898	3.466	4.785	5,041
8	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.355 3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1,372	1,812	2.228	2.764	3,169	4,144	4.587
11	0.000	0.697	0.876	1.088	1.363	1,798	2.201	2.718	3,108	4.025	4,437
12 13	0.000	0.696	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
15 16 17	0.000	0.690	0.865	1.071	1.337	1.748	2.120	2.583 2.567	2.921	3.698	4.015 3.965
10	0.000	0.088	0.862	1.007	1,330	1.734	2.101	2.552	2.878	3.610	3,922
19	0.000	0.688	0.861	1.086	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.084	1,325	1.725	2.086	2.528	2.845	3,552	3,850
18 19 20 21 22 23	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3,819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3,505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.089	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.084	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.050	2.485	2.787	3,450	3.725
20	0.000	0.684	0.855	1.057	1,310	1,703	2.052	2.479	2.771	3,421	3.690
28	0.000	0.683	0.855	1.057	1.313	1.703	2.052	2.467	2.783	3.408	3,674
24 25 28 27 28 29 30 40	0.000	0.683	0.854	1.055	1,311	1.099	2.045	2.462	2.758	3,396	3,659
30	0.000	0.683	0.854	1.055	1.310	1,697	2.042	2.457	2,750	3,385	3,646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.884	1.990	2.374	2.639	3.195	3.416



Confidence Intervals

- Confidence Interval Applet
- http://bcs.whfreeman.com/scc/content/cat_040/spt/confidence/confidenceinterval.html

STA 291 - Lecture 19

Example: Confidence Interval

Example: Find and interpret the 95% confidence interval for the population mean, if the sample mean is 70 and the pop. standard deviation is 12, based on a sample of size

First we compute 1.96x 1.2=2.352 \sqrt{n} =12/10= 1.2 , 1.96x 1.2=2.352 \sqrt{n} = [67.648, 72.352]

STA 291 - Lecture 19

Example: Confidence Interval

 Now suppose the pop. standard deviation is unknown (often the case). Based on a sample of size n = 100, Suppose we also compute the s = 12.6 (in addition to sample mean = 70)

First we compute

$$\frac{S}{\sqrt{n}}$$
 =12.6/10= 1.26,

From t-table 1.984 x 1.26 = 2.4998

[70 – 2.4998, 70 + 2.4998] = [67.5002, 72.4998]

STA 291 - Lecture 19

16

Confidence Interval: Interpretation

- "Probability" means that "in the long run, 95% of these intervals would contain the parameter"
- i.e. If we repeatedly took random samples using the same method, then, in the long run, in 95% of the cases, the confidence interval will cover the true unknown parameter
- For one given sample, we do not know whether the confidence interval covers the true parameter or not. (unless you know the parameter)
- The 95% probability only refers to the method that we use, but not to the individual sample

STA 291 - Lecture 19

17

Confidence Interval: Interpretation

- To avoid the misleading word "probability", we say:
 - "We are 95% **confident** that the interval will contain the true population mean"
- Wrong statement:

"With 95% probability, the population mean is in the interval from 3.5 to 5.2"

Wrong statement: "95% of all the future observations will fall within 3.5 to 5.2".

STA 291 - Lecture 19

Confidence Interval

• If we change the confidence level from 0.95 to 0.99, the confidence interval changes

Increasing the probability that the interval contains the true parameter requires increasing the length of the interval

- In order to achieve 100% probability to cover the true parameter, we would have to increase the length of the interval to infinite -- that would not be informative, not useful.
- There is a tradeoff between length of confidence interval and coverage probability. Ideally, we want short length and high coverage probability (high confidence level).

19

Different Confidence Coefficients

 In general, a confidence interval for the mean, m has the form

$$\bar{X} \pm z \cdot \frac{s}{\sqrt{n}}$$

 Where z is chosen such that the probability under a normal curve within z standard deviations equals the confidence level

STA 291 - Lecture 19

20

Different Confidence Coefficients

- We can use normal Table to construct confidence intervals for other confidence levels
- For example, there is 99% probability of a normal distribution within 2.575 standard deviations of the mean
- A 99% confidence interval for m is

$$\bar{X} \pm 2.575 \cdot \frac{\mathbf{s}}{\sqrt{n}}$$

STA 291 - Lecture 19

Error Probability

- The error probability (a) is the probability that a confidence interval does <u>not</u> contain the population parameter -- (missing the target)
- For a 95% confidence interval, the error probability a=0.05
- a = 1 confidence level or confidence level = 1 - a

STA 291 - Lecture 19

22

23

Different Confidence Levels

Confidence level	Error a	a/2	Z
90%	0.1		
95%	0.05	0.025	1.96
98%			
99%			2.575
99.74%			3
			1.5

STA 291 - Lecture 19

 If a 95% confidence interval for the population mean, turns out to be [67.4, 73.6]

What will be the confidence level of the interval [67.8, 73.2]?

STA 291 - Lecture 19

Interpretation of Confidence Interval

- If you calculated a 95% confidence interval, say from 10 to 14, The true parameter is either in the interval from 10 to 14, or not – we just don't know it (unless we knew the parameter).
- The 95% probability refers to probability before we do it: (before Joe shoot the free throw, I say he has 77% hitting the hoop. But after he did it, he either hit it or missed it).

STA 291 - Lecture 19

25

Interpretation of Confidence Interval, II

 If you repeatedly calculate confidence intervals with the same method, then 95% of them will contain the true parameter, --(using the long run average interpretation of the probability.)

STA 291 - Lecture 19

26

Choice of sample size

 In order to achieve a margin of error smaller than B, (with confidence level 95%), how large the sample size n must we get?

STA 291 - Lecture 19

Choice of Sample Size

$$\overline{X} \pm z \cdot \frac{S}{\sqrt{n}} = \overline{X} \pm B$$

- So far, we have calculated confidence intervals starting with z, n and S
- These three numbers determine the error bound B of the confidence interval
- Now we reverse the equation:
 - We specify a desired error bound B
 - Given zand S , we can find the minimal sample size n needed for achieve this.

STA 291 - Lecture 19

28

Choice of Sample Size

• From last page, we have

$$z \cdot \frac{\mathbf{S}}{\sqrt{n}} = B$$

- Mathematically, we need to solve the above equation for n
- The result is

$$n = \mathbf{S}^2 \cdot \left(\frac{z}{B}\right)^2$$

STA 291 - Lecture 19

29

Example

- About how large a sample would have been adequate if we merely needed to estimate the mean to within 0.5, with 95% confidence?
- (assume

$$s = 5$$

- B=0.5, z=1.96
- Plug into the formula:

$$n = 5^2 \cdot \left(\frac{1.96}{0.5}\right)^2 = 384.16$$

STA 291 - Lecture 19

Choice of sample size

- The most lazy way to do it is to guess a sample size n and
- Compute B, if B not small enough, then increase n;
- If B too small, then decrease n

STA 291 - Lecture 19

31

For the confidence interval for p

$$z \cdot \frac{\sqrt{p(1-p)}}{\sqrt{n}} = E$$

 Often, we need to put in a rough guess of p (called pilot value). Or, conservatively put p=0.5

STA 291 - Lecture 19

32

 Suppose we want a 95%confidence error bound B=3% (margin of error + - 3%).
 Suppose we do not have a pilot p value, so use p = 0.5

So, $n = 0.5(1-0.5) [1.96/0.03]^2 = 1067.11$

STA 291 - Lecture 19

Attendance Survey Question

- On a 4"x6" index card
 - Please write down your name and section number
 - -Today's Question:

Which t-table you like better?

STA 291 - Lecture 19

34

Facts About Confidence Intervals I

- The width of a confidence interval
 - Increases as the confidence level increases
 - Increases as the error probability decreases
 - Increases as the standard error increases
 - Decreases as the sample size *n* increases

STA 291 - Lecture 19

35

- www.webchem.sci.ru.nl/Stat/index.html
 Try to teach us confidence interval but the interpretation is all wrong
- For Bernoulli type data, the future observations NEVER fall into the confidence interval

STA 291 - Lecture 19