STA 291 Lecture 2

 Course web page: Updated: Office hour of Lab instructor.

- Statistics is the Science involving Data
- Example of data:

Item Name	Price	In Stock?	# in stock
Silver cane	43.50	Yes	3
Top hat	29.99	No	0
Red shoes	35.00	No	0
Blue T-shirt	5.99	Yes	15

 More complicated data (time series): many of those tables over time....every quarter company have their financial report.

 A single variable value over time: Stock price over the time period of 20 years.

Basic Terminology

Variable

- a characteristic of a unit that can <u>vary</u> among subjects in the population/sample
- Examples: gender, nationality, age, income, hair colour, height, disease status, grade in STA 291, state of residence, voting preference, weight, etc....

There are 4 variables displayed in the table on previous slide

Type of variables

- Categorical/Qualitative and
- Quantitative/numerical

Recall:

 A <u>Variable</u> is a characteristic of a unit that can <u>vary</u> among subjects in the data Within numerical variables: continuous or discrete.

Within categorical variables: nominal or ordinal.

 Examples (ordinal): very satisfied, satisfied, unsatisfied.....

Qualitative Variables (=Categorical Variables) Nominal or Ordinal

- Nominal: gender, nationality, hair color, state of residence
- Nominal variables have a scale of unordered categories
- It does not make sense to say, for example, that green hair is greater/higher/better than orange hair

Qualitative (Categorical) Variables Nominal or Ordinal

 Ordinal: Disease status, company rating, grade in STA 291. (best, good, fair, poor)

 Ordinal variables have a scale of ordered categories. They are often treated in a quantitative manner (GPA: A=4.0, B=3.0,...)

Quantitative Variables (=numerical variables)

- Quantitative: age, income, height, price
- Quantitative variables are measured numerically, that is, for each subject, a number is observed

Example 1

- Vigild (1988) "Oral hygiene and periodontal conditions among 201 institutionalized elderly", Gerodontics, 4:140-145
- Variables measured
 - Nominal: Requires Assistance from Staff?
 Yes / No
 - Ordinal: Plaque Score
 - No Visible Plaque Small Amounts of Plaque Moderate Amounts of Plaque Abundant Plaque
 - Quantitative: Number of Teeth (discrete)

Example 2

- The following data are collected on newborns as part of a birth registry database
- Ethnic background: African-American, Hispanic, Native American, Caucasian, Other
- Infant's Condition: Excellent, Good, Fair, Poor
- Birthweight: in grams
- Number of prenatal visits

Why is it important to distinguish between different types of data?

 Some statistical methods only work for quantitative variables, others are designed for qualitative variables. You <u>can</u> treat variables in a less quantitative manner. (but lose information/accuracy....sometimes for security reason).

- Examples include income, [20k or less, 20k to 40k, 40k to 60k, 60k and above] and
 - Height: Quantitative variable, continuous variable, measured in cm (or ft/in)
 - Can be treated as ordinal: short, average, tall
 - Can even be treated as nominal 180cm-200cm, all others

Sometimes, ordinal variables are treated as quantitative: the quality of the photo prints rated by human with a score from 1 to 10.

Discrete and Continuous

- A variable is discrete if it can take on a finite number of values
- Examples: gender, nationality, hair color, disease status, company rating, grade in STA 291, state of residence
- Qualitative (categorical) variables are always discrete
- Quantitative variables can be discrete or continuous

Discrete and **Continuous**

- Continuous variables can take an infinite continuum of possible real number values
- Example: time spent on STA 291 homework
 - can be 63 min. or 85 min.
 - or 27.358 min. or 27.35769 min. or ...
 - can be **subdivided**
 - therefore continuous

Discrete or Continuous

- Another example: number of children
- can be 0, 1, 2, 3, ...
- can not be 1.5 or 2.768
- can not be subdivided
- therefore not continuous but discrete

 Data are increasingly getting larger. A few gigabyte is considered large 5 years ago

 Microsoft Excel often not enough. (64k rows by 256 columns)

Data base software SQL etc.

Data mining

Where do data come from?

 Two types of data collection method covered in this course:

(1) experiments (2) polls

Second hand, from internet.....

Simple Random Sampling

- Each possible sample has the same probability of being selected. [no discrimination, no favoritism.]
- The sample size is usually denoted by n.

Example: Simple Random Sampling

- Population of 4 students: Adam, Bob, Christina, Dana
- Select a simple random sample (SRS) of size n=2 to ask them about their smoking habits
- 6 possible samples of size n=2:
 - (1) A B, (2) A C, (3) A D
 - (4) B C, (5) B D, (6) C D

How to choose a SRS?

- Each of the six possible samples has to have the same probability of being selected
- For example, roll a die (or use a computergenerated random number) and choose the respective sample
- Online Sampling Applet

How **not** to choose a SRS?

- Ask Adam and Dana because they are in your office anyway
 - "convenience sample"
- Ask who wants to take part in the survey and take the first two who volunteer
 - "volunteer sampling"

Problems with Volunteer Samples

- The sample will poorly represent the population
- Misleading conclusions
- BIAS
- Examples: Mall interview, Street corner interview

Homework 1

- Due Jan 28,11 PM.
- homework assignment:

Log on to MyStatLab and create an account for this course. Complete one question with several multiple choices.

Attendance Survey Question

- On a 4"x6" index card (or little piece of paper)
 - write down your Name and 291 Section number
 - Today's Question: (regarding prereq.)
 You have taken
 - A. MA123, B. MA113, C. both, D. equiv.