STA 291 Lecture 20

- Exam II Today 5-7pm
- Memorial Hall (Same place as exam I)
- Makeup Exam 7:15pm 9:15pm
- Location CB 234
- Bring a calculator, picture ID

Exam II Covers ...

- Chapter 9
- 10.1; 10.2; 10.3; 10.4; 10.6
- 12.1; 12.2; 12.3; 12.4

Formula sheet; normal table; t-table will be provided.

Example:

 Smokers try to quit smoking with Nicotine Patch or Zyban.

• Find the 95% confidence intervals

Example

- To test a new, high-tech swimming gear, a swimmer is asked to swim twice a day, one with the new gear, one with the old.
- The difference in time is recorded:
 Time(new) time(old) = -0.08, -0.1, 0.02,-0.004. There were a total of 21 such differences.
- Q: is there a difference?

- First: we recognize this is a problem with mean mu.
- And we compute the average X bar = -0.07
- SD = 0.02
- 90% confidence interval is:

Plug-in the values into formula

$$\bar{X} - ?? \frac{0.02}{\sqrt{21}}$$
 and $\bar{X} + ?? \frac{0.02}{\sqrt{21}}$

$$-0.07 - ??\frac{0.02}{\sqrt{21}}$$
 and $-0.07 + ??\frac{0.02}{\sqrt{21}}$

• What is the ?? Value.

- It would be 1.645 if we knew sigma, the population SD. But we do not, we only know the sample SD. So we need Tadjustment.
- Df= 21 -1 = 20
- ??=1.725

Confidence interval for mu

- For continuous type data, often the parameter is the population mean, mu.
- Chap. 12.1 12.4

Chap. 12.1 – 12.4: Confidence Interval for mu

The random interval between

$$\overline{X} - 1.96 \frac{\mathbf{s}}{\sqrt{n}}$$
 and $\overline{X} + 1.96 \frac{\mathbf{s}}{\sqrt{n}}$

Will capture the population mean, mu, with 95% probability

- This is a confidence statement, and the interval is called a 95% confidence interval
- We need to know sigma. 🛞

- confidence level 0.90, $\leftarrow \rightarrow \qquad z_{a/2} = 1.645$
- confidence level 0.95 $\leftarrow \rightarrow Z_{a/2} = 1.96$
- confidence level 0.99 $\leftarrow \rightarrow$ $Z_{a/2} = 2.575$
- Where do these numbers come from? (same number as the confidence interval for p).
- They are from normal table/web

"Student" t - adjustment

 If sigma is unknown, (often the case) we may replace it by s (the sample SD) but the value Z (for example z=1.96) needs adjustment to take into account of extra variability introduced by s

- There is another table to look up: t-table or another applet
- <u>http://www.socr.ucla.edu/Applets.dir/Normal_T_Chi2_F_Tables.htm</u>

Degrees of freedom, n-1

- Student t table is keyed by the df degrees of freedom
- Entries with infinite degrees of freedom is same as Normal table

• When degrees of freedom is over 200, the difference to normal is very small

With the t-adjustment, we **do not** require a large sample size n.

• Sample size n can be 25, 18 or 100 etc.

<i>t</i> 1	Table											
cu	ım. prob	t.50	t.75	t.00	t.05	ť.,90	t	t.075	t.00	Z.,005	t.,000	t.0005
	one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
t	wo-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
	df											
	1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
	2 3	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
		0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
	4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
	5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
	6 7	0.000 0.000	0.718 0.711	0.906 0.896	1.134 1.119	1.440 1.415	1.943 1.895	2.447 2.365	3.143 2.998	3.707 3.499	5.208 4.785	5.959 5.408
	8	0.000	0.706	0.880	1.108	1.397	1.860	2.300	2.896	3.355	4.760	5.041
	9	0.000	0.703	0.883	1.100	1.383	1.833	2.300	2.821	3.250	4.301	4.781
	10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
	11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
	12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
	13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
	14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
	15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
	16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
	17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
	18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
	19 20	0.000	0.688 0.687	0.861	1.066	1.328	1.729	2.093	2.539 2.528	2.861	3.579	3.883
	20	0.000	0.686	0.860 0.859	1.064 1.063	1.325 1.323	1.725 1.721	2.086 2.080	2.528	2.845 2.831	3.552 3.527	3.850 3.819
	22	0.000	0.686	0.858	1.003	1.323	1.717	2.060	2.508	2.831	3.505	3.792
	23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
	24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
	25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
	26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
	27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
	28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
	29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
	30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
	40 60	0.000 0.000	0.681 0.679	0.851 0.848	1.050 1.045	1.303 1.296	1.684	2.021 2.000	2.423 2.390	2.704 2.660	3.307 3.232	3.551 3.460
	80	0.000	0.679	0.848	1.040	1.290	1.671 1.664	2.000	2.380	2.660	3.232 3.195	3.400 3.416
	400	0.000	0.070	0.046	1.0 1 3 4.049	4,000	1.004	1.880	2.374	2.038	3. IBU 3. 474	3.410

Example: Confidence Interval

• Example: Find and interpret the 95% confidence interval for the population mean, if the sample mean is 70 and the pop. standard deviation is 12, based on a sample of size

n = 100

First we compute $\frac{S}{\sqrt{n}} = 12/10 = 1.2$, 1.96x 1.2=2.352 [70-2.352, 70+2.352] = [67.648, 72.352]

Example: Confidence Interval

 Now suppose the pop. standard deviation is unknown (often the case). Based on a sample of size n = 100, Suppose we also compute the s = 12.6 (in addition to sample mean = 70)

First we compute
$$\frac{S}{\sqrt{n}}$$
 =12.6/10= 1.26 ,
From t-table 1.984 x 1.26 = 2.4998
[70 - 2.4998, 70 + 2.4998] = [67.5002, 72.4998]

Confidence Interval: Interpretation

- "Probability" means that "in the long run, 95% of these intervals would contain the parameter"
- i.e. If we repeatedly took random samples using the same method, then, in the long run, in 95% of the cases, the confidence interval will cover the true unknown parameter
- For one given sample, we do not know whether the confidence interval covers the true parameter or not. (unless you know the parameter)
- The 95% probability only refers to the method that we use, but not to the individual sample

Confidence Interval: Interpretation

- To avoid the misleading word "probability", we say:
 - "We are 95% **confident** that the interval will contain the true population mean"
- Wrong statement:

"With 95% probability, the population mean is in the interval from 3.5 to 5.2"

Wrong statement: "95% of all the future observations will fall within 3.5 to 5.2".

Confidence Interval

- If we change the confidence level from 0.95 to 0.99, the confidence interval changes
- Increasing the probability that the interval contains the true parameter requires increasing the length of the interval
- In order to achieve 100% probability to cover the true parameter, we would have to increase the length of the interval to infinite -- that would not be informative, not useful.
- There is a tradeoff between length of confidence interval and coverage probability. Ideally, we want short length and high coverage probability (high confidence level). STA291- Lecture 20

Different Confidence Coefficients

In general, a confidence interval for the mean, *m* has the form

$$\overline{X} \pm z \cdot \frac{s}{\sqrt{n}}$$

 Where z is chosen such that the probability under a normal curve within z standard deviations equals the confidence level

Different Confidence Coefficients

- We can use normal Table to construct confidence intervals for other confidence levels
- For example, there is 99% probability of a normal distribution within 2.575 standard deviations of the mean
- A 99% confidence interval for *m* is

$$\overline{X} \pm 2.575 \cdot \frac{s}{\sqrt{n}}$$

Error Probability

- The error probability (a) is the probability that a confidence interval does <u>not</u> contain the population parameter -- (missing the target)
- For a 95% confidence interval, the error probability a=0.05
- a = 1 confidence level or confidence level = 1 - a

Different Confidence Levels

Confidence level	Error a	a/2	Ζ
90%	0.1		
95%	0.05	0.025	1.96
98%	0.02	0.01	2.33
99%			2.575
99.74%			3
86.64%	0.1336	0.0668	1.5

If a 95% confidence interval for the population mean, turns out to be
 [67.4, 73.6]

What will be the confidence level of the interval [67.8, 73.2]?

Choice of sample size

 In order to achieve a margin of error smaller than B, (with confidence level 95%), how large the sample size n must we get?

Choice of Sample Size $\overline{X} \pm z \cdot \frac{s}{\sqrt{n}} = \overline{X} \pm B$

- So far, we have calculated confidence intervals starting with z, n and S
- These three numbers determine the error bound *B* of the confidence interval
- Now we reverse the equation:
 - We specify a desired error bound *B*
 - Given *z* and *S* , we can find the minimal sample size n needed for achieve this.

Choice of Sample Size

• From last page, we have

$$z \cdot \frac{\mathbf{S}}{\sqrt{n}} = B$$

- Mathematically, we need to solve the above equation for *n*
- The result is

$$n = \mathbf{S}^2 \cdot \left(\frac{z}{B}\right)^2$$

Example

- About how large a sample would have been adequate if we merely needed to estimate the mean to within 0.5, with 95% confidence?
- (assume s = 5

- B=0.5, z=1.96
- Plug into the formula:

$$n = 5^2 \cdot \left(\frac{1.96}{0.5}\right)^2 = 384.16$$

STA 291 - Lecture 20

Choice of sample size

 The most lazy way to do it is to guess a sample size n and

- Compute B, if B not small enough, then increase n;
- If B too small, then decrease n

For the confidence interval for p

$$z \cdot \frac{\sqrt{p(1-p)}}{\sqrt{n}} = B$$

 Often, we need to put in a rough guess of p (called pilot value). Or, conservatively put p=0.5 Suppose we want a 95%confidence error bound B=3% (margin of error + - 3%).
 Suppose we do not have a pilot p value, so use p = 0.5

So, $n = 0.5(1-0.5) [1.96/0.03]^2 = 1067.11$

Attendance Survey Question

- On a 4"x6" index card
 - Please write down your name and section number
 - -Today's Question:

Which t-table you like better?

Facts About Confidence Intervals I

- The width of a confidence interval
 - Increases as the confidence level increases
 - Increases as the error probability decreases
 - Increases as the standard error increases
 - Decreases as the sample size *n* increases