STA 291
Lecture 21

All confidence intervals we learned here is
of the form

Point estimator & error bound
Interchangeable wording:

Error bound = margin of error
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* If everything else held unchanged;
increase confidence level > larger error
bound

« |If everything else held unchanged,;
increase sample size n > smaller error
bound
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Planning on the sample size n

» Usually we first fix a confidence level, e.g.
95%.

» Then we would “trial and error” with
different sample size n and see how
small/large the error bound would be.
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Example

» For 95% confidence intervals on a
proportion p

e If n=1500 -> error bound = 0.02530
or 2.53%

e If n=1000 - error bound=0.03099
or 3.10%
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e fn=700 - error bound =0.03704
or 3.7%

 Ifn=500 - error bound=0.0438
or 4.38%

Etc. etc. The formula | used is
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* Error bound = 1.9639/ 0-53-_' 0-5)
n

« If there is no reliable information on p, we
can use the conservative value: p= 0.5
(the answer is not very sensitive to the
change in the value of p)
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Choice of sample size

» Margin of error = error bound = B
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Choice of sample size
« In order to achieve a margin of error B,

(with confidence level 95%), how large the
sample size n must we get?

« For the confidence interval of population
mean, mu, the formula is
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Choice of Sample Size

K+zx>_ =X +B

n

« So far, we have calculated confidence intervals starting
withz, n and S (plus, a possible t adjustment)

« These three numbers determine the error bound B of the
confidence interval

« Now we reverse the equation:
* We specify a desired error bound B
e Givenzand S , we can find the minimal sample
size n needed for achieve this.
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Choice of Sample Size

From last page, we have

S
z2%x—==B
Jn

* Mathematically, we need to solve the above

equation forn
c.)2
n=s? >§—E -
Bg

e The result is
* B must be in deciffaf fort ©

Example

« About how large a sample would have been adequate if
we merely needed to estimate the mean to within 0.5 unit,
with 95% confidence?

e (assume S . 5 this may come from a pilot study)

* B=0.5, z=1.96

¢ Plug into the formula: 2
n =5 fﬁg =384.16
05 g
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* Inreality,S is usually replaced by s and
We need to replace z by t (with t-table).

For example, if the number 5 is actually s,
not S then

2
n=75? ?ﬂg =393.62
05 g
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* | want to stress that these are somewhat
approximate calculations, as they rely on
the pilot information about either S or p,
which may or may not be very reliable.

 But it is much better than no planning
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Choice of sample size

» The most lazy way to do it is to guess a
sample size n and

« Compute B, if B not small enough, then
increase n;

« If B too small, then you may decrease n
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« For the confidence interval for p

alpd-p) _ o
Jn

» Often, we need to put in a rough guess of
p (called pilot value). Or, conservatively
put p=0.5
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» Suppose we want a 95%confidence error
bound B=3% (margin of error +- 3%).

Suppose we do not have a pilot p value, so
use p=0.5

So, n=0.5(1-0.5)[1.96/0.03"2=1067.11
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Example 1(from last lecture):

» Smokers try to quit smoking with Nicotine
Patch or Zyban.

» Placebo 160 subjects, 30 quit
» Patch: 244 subjects, 52 quit
e Zyban: 244 subjects, 85 quit

» Zyban+patch: 245 subjects, 95 quit

 Find the 95% confidence intervals for p:
the success rate/proportion
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95% confidence intervals for p

 Placebo: [0.13, 0.25]

» Patch: [0.16, 0.26]

e Zyban: [0.29, 0.41]
» Zyban+patch: [0.33, 0.44]
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Example 2

» Totest a new, high-tech swimming gear, a
swimmer is asked to swim twice a day,
one with the new gear, one with the old.

 The difference in time is recorded:

Time(new) —time(old) = -0.08, -0.1, 0.02,
....-0.004. There were a total of 21 such
differences.

Q: is there a difference?
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« First: we recognize this is a problem with
mean mu.

» And we compute the average X bar=-0.07
SD =0.02

90% confidence interval is:
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Plug-in the values into formula

and )?+’??%

J21 J21

. 002

-0.07- ’7’% and -0.07+ 7’%

J21 V21
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What is the ?? Value.

It would be 1.645 if we knew sigma, the
population SD. But we do not, we only
know the sample SD. So we need T-
adjustment.

Df=21-1=20

??=1.725
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Example 3: Confidence Interval

Example: Find and interpret the 95%
confidence interval for the population mean, if
the sample mean is 70 and the pop. standard
deviation is 12, based on a sample of size
n =100

S
First we compute T =12/10=1.2,

1.96x1.2=2.352
[70-2.352, 70+ 2.352]=[67.648, 72.352]
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Example: Confidence Interval

Now suppose the pop. standard deviation is
unknown (often the case). Based on a sample
of size n =100, Suppose we also compute the s =
12.6 (in addition to sample mean = 70)

First we compute i =12.6/10=1.26,
Jn
From ttable 1.984 x 1.26 = 2.4998

[70—2.4998, 70 + 2.4998] = [ 67.5002, 72.4998]
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Error Probability

» The error probability (@) is the probability that a
confidence interval does not contain the
population parameter -- (missing the target)

» For a 95% confidence interval, the error
probability a=0.05

+ a=1-confidence level or

confidence level =1 -a
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Different Confidence Levels

Confidence Errora a/2 z
level
90% 0.1
95% 0.05 0.025 1.96
98% 0.02 0.01 2.33
99% 2.575
99.74% 3
86.64% 0.1336 0.0668 15
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Attendance Survey Question

* On a4"x6” index card

—Please write down your name and
section number

—Today’s Question: Are you going to
watch the NCAA Basketball game this
weekend?

a. All

b. Some

c. None
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Facts About
Confidence Intervals |

» The width of a confidence interval
— Increases as the confidence level increases
— Increases as the error probability decreases
— Increases as the standard error increases
— Decreases as the sample size n increases

STA 291 - Lecture 21 28

10



