STA 291 Lecture 23

- Testing hypothesis about population proportion(s)
- Examples.

Exam II curve

- 100 --- 83 A
- 82 --- 71 B
- 70 --- 59 C
- 58 --- 48 D
- 47 ---- 0 E

About bonus project

- Must include at least following items:
- Clearly state the null hypothesis to be tested, and the alternative hypothesis.
- What kind of data you want to collect? How many data you want? (yes, more data is always better, but be reasonable)
- Pick an alpha level.
-- For each item, give some discussion of why you think this is the right choice.
-- there is an example of "home field advantage" in book. Read it

Example: compare 2 proportions

- A nation wide study: an aspirin every other day can sharply reduce a man's risk of heart attack. (New York Times, reporting Jan. 27, 1987)
- Aspirin group: 104 Heart Att. in 11037
- Placebo group: 189 Heart Att. in 11034
- Randomized, double-blinded study

Example - cont.

- Let aspirin = group 1; placebo = group 2 p1 = popu. proportion of Heart att. for group 1
p2 = popu. proportion of Heart att. for group 2
$H_{0}: p_{1}=p_{2}$ which is equivalent to $H_{0}: p_{1}-p_{2}=0$

$$
H_{A}: p_{1} \neq p_{2} \text { or } H_{A}: p_{1}-p_{2} \neq 0
$$

Example - cont.

- We may use software to compute a pvalue
- p-value $=7.71 \mathrm{e}-07=0.000000771$

Or we can calculate by hand:

$$
z_{o b s}=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n_{1}}+\frac{\hat{p}(1-\hat{p})}{n_{2}}}}
$$

Example - cont.

- $\mathrm{n} 1=11037, \mathrm{n} 2=11034$

$$
\begin{aligned}
& \hat{p}_{1}=104 / 11037=0.00942285 \\
& \hat{p}_{2}=189 / 11034=0.01712887
\end{aligned}
$$

$$
\hat{p}=(104+189) /(11037+11034)=0.013275
$$

$$
\begin{aligned}
z & =-0.00770602 / 0.001540777 \\
& =-5.001386
\end{aligned}
$$

Example - cont.

- P -value $=2 \times \mathrm{P}(Z>|-5.00|)$
- It falls out of the range of our Z- table, so......

P-value is approx. zero. (much smaller than 0.0000?)

What is alpha level? Say it was 0.01 . Since P -value is smaller than alpha, we reject the null hypothesis.

Example 2

- Let \boldsymbol{p} denote the proportion of Floridians who think that government environmental regulations are too strict
- Test $\boldsymbol{H}_{0}: \mathbf{p}=\mathbf{0 . 5}$ against a two-sided alternative using data from a telephone poll of 834 people conducted in June 1995 in which 26.6% said regulations were too strict
- Calculate the test statistic
- Find the p-value and interpret
- Using alpha=0.01, can you determine whether a majority or minority think that environmental regulations are too strict, or is it plausible that $\boldsymbol{p = 0 . 5}$?
- Construct a 99% confidence interval. Explain the advantage of the confidence interval over the test.

Example 3: KY Kernel Jan 17,

 2007- UK researcher developed a blood substitute. A total of 712 trauma patients in the study. 349 receive PolyHeme (a blood substitute), 363 receive regular blood.
- 46 died in the PolyHeme group
- 35 died in the regular group.
- Is there any difference in the two rates of death?
- This is very similar to the heart attack example.
- The only place we need to be careful: our formula only work well for large n (here n 1 and n2)
- Usually we check $n p>10$, and $n(1-p)>10$

Decisions and Types of Errors in Tests of Hypotheses

- Terminology:
- The alpha-level (significance level) is a threshold number such that one rejects the null hypothesis if the p-value is less than or equal to it. The most common alpha-levels are .05 and .01
- The choice of the alpha-level reflects how cautious the researcher wants to be (when it come to reject null hypothesis)

Type I and Type II Errors

- Type I Error: The null hypothesis is rejected, even though it is true.
- Type II Error: The null hypothesis is not rejected, even though it is false.
- Setting the alpha-level low protect us from type I Error. (the probability of making a type I error is less than alpha)

Type I and Type II Errors

Decision

Type I and Type II Errors

- Terminology:
- Alpha = Probability of a Type I error
- Beta = Probability of a Type II error
- Power = 1 - Probability of a Type II error
- For a given data, the smaller the probability of Type I error, the larger the probability of Type II error and the smaller the power
- If you set alpha very small, it is more likely that you fail to detect a real difference (larger Beta).
- When sample size(s) increases, both error probabilities could be made to decrease.
- Our Strategy:
- keep type I error probability small by pick a small alpha.
- Increase sample size to make Beta small.

Type I and Type II Errors

- In practice, alpha is specified, and the probability of Type II error could be calculated, but the calculations are usually difficult (sample size calculation)
- How to choose alpha?
- If the consequences of a Type I error are very serious, then chose a smaller alpha, like 0.01.
- For example, you want to find evidence that someone is guilty of a crime.
- In exploratory research, often a larger probability of Type I error is acceptable (like 0.05 or even 0.1)

Alternative and p-value computation

$$
H_{0}: p=p_{0}
$$

	One-Sided Tests		Two-Sided Test
alternative Hypothesis	$H_{A}: p<p_{0}$	$H_{A}: p>p_{0}$	$H_{A}: p \neq p_{0}$
p-value	$P\left(Z<z_{\text {obs }}\right)$	$P\left(Z>z_{\text {obs }}\right)$	$2 \cdot P\left(Z>\mid z_{\text {obs }} \mathrm{I}\right)$
$z_{\text {obs }}=\frac{\hat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / n}}$			

Two sample cases are similar, with two differences:

- Hypothesis involve 2 parameters from 2 populations
- Test statistic is different, involve 2 samples

Alternative and p-value computation

$$
H_{0}: p_{1}-p_{2}=0
$$

	One-Sided Tests		Two-Sided Test
alternative Hypothesis	$H_{A}: p_{1}-p_{2}<0$	$H_{A}: p_{1}-p_{2}>0$	$H_{A}: p_{1}-p_{2} \neq 0$
p-value	$P\left(Z<z_{\text {obs }}\right)$	$P\left(Z>z_{\text {obs }}\right)$	$2 \cdot P\left(Z>\left\|z_{\text {obs }}\right\|\right)$

Two p's

$H_{0}: p_{1}=p_{2}$ which is equivalent to $H_{0}: p_{1}-p_{2}=0$,

$$
z_{o b s}=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n_{1}}+\frac{\hat{p}(1-\hat{p})}{n_{2}}}}
$$

- Where the \hat{p} in the denominator is the combined (pooled) sample proportion.
$=$ Total number of successes over total number of observations

Attendance Survey Question 23

- On a 4"x6" index card
-Please write down your name and section number
-Today's Question:
-What is your lab instructor's name?

