STA 291 Lecture 24

- Two kinds of Error in Testing hypothesis
- Examples.

About bonus project

Due in Lab April 20-22

- Some survey show a majority people believe in "hot hand". A follow-up question then is: if there were "hot hand", how much better/worse a shooter can become by the previous shoots? (i.e. what is a reasonable difference to expect)
- i.e. whether he made or missed the two previous shots, how much difference do you think this has the effect on the present shoot? (in terms of hitting percentages) 5% ? 10% ? or even 20% ?
- Since a small difference will need more data to detect.
- A larger difference can be discovered with less data.
- Some clue: margin of error calculations.
- Bonus is worth equivalent to one LAB
- Lab will start to give "practical quiz"

Decisions and Types of Errors in Tests of Hypotheses

- Terminology:
- The alpha-level (significance level) is a threshold number such that one rejects the null hypothesis if the p-value is less than or equal to it. The most common alpha-levels are 0.05 and 0.01
- The choice of the alpha-level reflects how cautious the researcher wants to be (when it come to reject null hypothesis)

Type I and Type II Errors

- Type I Error: The null hypothesis is rejected, even though it is true.
- Type II Error: The null hypothesis is not rejected, even though it is false.
- Setting the alpha-level low protect us from type I Error. (the probability of making a type I error is less than alpha)

Type I and Type II Errors

Decision

Type I and Type II Errors

- Terminology:
- Alpha = Probability of make a Type I error
- Beta = Probability of make a Type II error
- Power = 1 - Probability of a Type II error = 1 - Beta
- For a given data, the smaller the probability of Type I error, the larger the probability of Type II error and the smaller the power
- i.e. If you set alpha very small, it is more likely that you fail to detect a real difference (larger Beta).
- When sample size(s) increases, both error probabilities could be made to decrease.
- Our Strategy:
-- keep type I error probability small by pick a small alpha. -- Increase sample size to make Beta small.
- Depend on how expensive to obtain data, a Beta $=0.15$ is not uncommon.

Type I and Type II Errors

- In practice, alpha is specified, and the probability of Type II error could be calculated, but the calculations are usually difficult (sample size calculation)
- How to choose alpha?
- If the consequences of a Type I error are very serious, then chose a smaller alpha, like 0.01.
- For example, you want to find evidence that someone is guilty of a crime.
- In exploratory research, often a larger probability of Type I error is acceptable (like 0.05 or even 0.1)

Example: New drug development

- The null hypothesis usually state that the new drug is "no difference" to the placebo.
- A type I error in this context is: falsely conclude a drug is useful when it is actually "NO effect"
- A type II error in this context is: falsely dismiss a useful drug.

Alternative and p-value computation

$$
H_{0}: p=p_{0}
$$

	One-Sided Tests		Two-Sided Test
alternative Hypothesis	$H_{A}: p<p_{0}$	$H_{A}: p>p_{0}$	$H_{A}: p \neq p_{0}$
p-value	$P\left(Z<z_{\text {obs }}\right)$	$P\left(Z>z_{\text {obs }}\right)$	$2 \cdot P\left(Z>\left\|z_{\text {obs }}\right\|\right)$
$z_{\text {obs }}=\frac{\hat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / n}}$			
STA 29- Lectur 24			

Example

- Two consumer products (shampoo, laundry detergent etc) comparison. Call them A vs. B
- n consumers are given both products in the identical packaging. After one week of use of both products, state a preference.
- If there were no difference, then we should see 50\%-50\%
- Suppose in $\mathrm{n}=236$ consumers, 110 prefer product A. Let $p=$ popu. proportion prefer A. Use alpha $=0.05$
- Null:

$$
H_{0}: p=0.5
$$

- Alternative: $H_{A}: p \neq 0.5$
- Compute $z_{\text {obs }}$
- Sample proportion, $\hat{p}=110 / 236=0.4661$

$$
z_{o b s}=\frac{0.4661-0.5}{\sqrt{0.5(1-0.5) / 236}}=-1.04156
$$

- Finally look the Z table for P-value:
- P-value $=2 P(Z>1.04)=2(1-0.8508)=0.2984$
- Conclusion, we do not reject null hypothesis since P-value is not less than alpha.
- Since 0.2984 is not less than 0.05

Two sample cases are similar, with two differences:

- Hypothesis involve 2 parameters from 2 populations
- Test statistic, $z_{\text {obs }}$, is different, involve 2 samples

Alternative and p-value computation

$$
H_{0}: p_{1}-p_{2}=0
$$

	One-Sided Tests		Two-Sided Test
alternative Hypothesis	$H_{A}: p_{1}-p_{2}<0$	$H_{A}: p_{1}-p_{2}>0$	$H_{A}: p_{1}-p_{2} \neq 0$
p-value	$P\left(Z<z_{\text {obs }}\right)$	$P\left(Z>z_{\text {obs }}\right)$	$2 \cdot P\left(Z>\left\|z_{\text {obs }}\right\|\right)$

Two p's

$H_{0}: p_{1}=p_{2}$ which is equivalent to $H_{0}: p_{1}-p_{2}=0$,

$$
z_{o b s}=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n_{1}}+\frac{\hat{p}(1-\hat{p})}{n_{2}}}}
$$

- Where the \hat{p} in the denominator is the combined (pooled) sample proportion.
$=$ Total number of successes over total number of observations

So there are 3 different sample proportions: from sample one, from sample two and from both samples.

- P for P -value in a test hypothesis setting
- p for population proportion
- \hat{p} for sample proportion
- p_{0} for the hypothesized population proportion value

Attendance Survey Question 24

- On a 4"x6" index card
-Please write down your name and section number
-Today's Question:
-Probability of making a type II error is denoted by:
a. Alpha b. Beta c. Power

Example: compare 2 proportions

- A nation wide study: an aspirin every other day can sharply reduce a man's risk of heart attack. (New York Times, reporting Jan. 27, 1987)
- Aspirin group: 104 Heart Att. in 11037
- Placebo group: 189 Heart Att. in 11034
- Randomized, double-blinded study

Example - cont.

- Let aspirin = group 1; placebo = group 2 p1 = popu. proportion of Heart att. for group 1
p2 = popu. proportion of Heart att. for group 2
$H_{0}: p_{1}=p_{2}$ which is equivalent to $H_{0}: p_{1}-p_{2}=0$

$$
H_{A}: p_{1} \neq p_{2} \text { or } H_{A}: p_{1}-p_{2} \neq 0
$$

Example - cont.

- We may use software to compute a pvalue
- p-value $=7.71 \mathrm{e}-07=0.000000771$

Or we can calculate by hand:

$$
z_{o b s}=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n_{1}}+\frac{\hat{p}(1-\hat{p})}{n_{2}}}}
$$

Example - cont.

- $\mathrm{n} 1=11037, \mathrm{n} 2=11034$

$$
\begin{aligned}
& \hat{p}_{1}=104 / 11037=0.00942285 \\
& \hat{p}_{2}=189 / 11034=0.01712887
\end{aligned}
$$

$$
\hat{p}=(104+189) /(11037+11034)=0.013275
$$

$$
\begin{aligned}
z & =-0.00770602 / 0.001540777 \\
& =-5.001386
\end{aligned}
$$

0.00942285-0.01712887

obs $=\frac{(\hat{p}(1-\hat{p})}{\sqrt{11037}+\frac{0.013275(1-0.013275)}{11034}}$

Example - cont.

- P -value $=2 \times \mathrm{P}(Z>|-5.00|)$
- It falls out of the range of our Z- table, so......

P-value is approx. zero. (much smaller than 0.0000?)

What is alpha level? Say it was 0.01 . Since P -value is smaller than alpha, we reject the null hypothesis.

