STA 291 Lecture 27

- Final exam 6:00-8:00PM Thursday May 6
- Room: will be in the Classroom Building

STA 291 - Lecture 27

- Makeup final exam: Friday May 7
- 10:00am 12:00 noon

STA 291 - Lecture 27

Last online Homework

Last Online homework assignment will be posted this week

STA 291 - Lecture 27

Example: two sample test

- Comparing Two Populations
 - Two Independent Samples (not paired)

STA 291 - Lecture 27

Chap.13 Comparison of Two population means with Independent Samples

- Two *Independent* Samples (not paired)
 - Different subjects in the different samples
 - -Two subpopulations (e.g., male/female)
 - The two samples constitute independent samples from two subpopulations, sample size can be different and often are different

-	
_	

Example

- Weight gain (grams) of female rats between 28 and 84 days after birth. 12 were fed with high protein diet, 7 were fed with low protein diet.
- High protein: 134, 146, 104, 119, 124, 161, 107, 83,113, 129, 97, 123.
- Low protein: 70, 118, 101, 85, 107, 132, 94.

STA 291 - Lecture 27

Two samples. un-equal sample size.
 Parameters: 2 mu's (the population mean values)

$$H_0: \mathbf{m}_1 = \mathbf{m}_2$$
 (two sided) $H_A: \mathbf{m} \neq \mathbf{m}_2$

- Compute t_obs = 1.891436
- P-value = 0.0757 (use two sided formula)

STA 291 - Lecture 27

- This calculation of t_obs can be done by calculator,
- But more often by a software.
- Besides, an extensive t-table is not always available on paper.

 Sometime we just report a P-value. So, in this example if we decided to use alpha=0.05 the conclusion would be "not reject Ho", since 0.0757 is NOT less than alpha 	
STA 291 - Lecture 27 10	
Sample size is small. Here 12 and 7.	
Have to use t-table, (the substitute of Z-table would result in large errors)	
Usually done by software. We are not required to work with software in sta291 exam, but we should be able to workout everything else given the computer output, or P-value.	
STA 291 - Lecture 27 11	
Confidence Interval for the Difference of Two Means: Example	
In the 1982 General Social Survey, 350 subjects reported the time spent every day watching television. The sample mean was 2.7 hours, with standard deviation 2.1	
 In the 1994 General Social Survey, 395 subjects reported a mean time spent watching television of 3.5 hours, with standard deviation 2.5 	
Is it plausible that the mean was the same in both years?	

- both mu's unknow (for year 1982 and 1994) since we never was sure about the year 1982. (no census was done)
- Two sided alternative. We did not see something like "was average TV time increased". The default one is to use twosided alternative

$$H_A: \mathbf{m} \neq \mathbf{m}_2$$

STA 291 - Lecture 27

 TV programs are getting better, but other competing form (internet, computers etc) getting the people away from TV

STA 291 - Lecture 27

14

Significance Test for the Difference of Two Means

 Let mu1 be the mean in 1982, and mu2 be the mean in 1994

 $H_0: \mathbf{m}_1 = \mathbf{m}_2$ which is equivalent to $H_0: \mathbf{m}_2 - \mathbf{m}_1 = 0$,

$$t_{obs} = \frac{\bar{X}_2 - \bar{X}_1}{\sqrt{\frac{s_1^2 + s_2^2}{n_1 + n_2}}}$$

STA 291 - Lecture 27

15

$$\frac{2.7 - 3.5}{\sqrt{\frac{2.1^2}{350} + \frac{2.5^2}{395}}} = -4.745$$

STA 291 - Lecture 27

• P-value = 2P(Z > 4.745) = 0.000002085

or less than 2x0.000?= 0.000? by our Z table

- Highly significant!
- Strictly speaking I should look up the ttable....P-value = 0.00000250
- Did not change our conclusion.

 In general when sample size(s) > 100, normal table and t-table are very similar

STA 291 - Lecture 27

18

16

17

 Will have one (or two) long question that is not multiple choice. This is where you can earn partial credit even if the final answer is wrong 	
STA 291 - Lecture 27 19	
Get prepared by reviewing Formula sheets Lecture notes The first two exams Online homework questions Material from lab sessions Textbook Old exams	
STA 291 - Lecture 27 20	
Testing hypothesis (we covered 4 cases)	
Null and alternative hypothesis	
P-value, significance	
Type I and type II errors	
STA 291 - Lecture 27 21	

Computation of the test statistics	
Computation of the test statistic:	
either z or t (follow formula sheet)	
And table	
STA 291 - Lecture 27 22	
Multiple choice Q	
If a test turns out to be significant at alpha-	
level 0.01. (what exactly this mean for the p-value?)	
Will the same test also be significant at 0.05 level?	
0.00 level:	
STA 291 - Lecture 27 23	
P-value is <i>NOT</i> the probability that the H0	
is true.	
A small p-value mean that we saw	
something happened that is <i>hard to explain</i> by H0 (a small probability event)	
A large p-value do not automatically	
means H0 is true. (2 possibilities: either H0 is true or there is too few data/info)	
STA 291 - Lecture 27 24	

Correspondence Between Confidence Intervals and Tests

Only apply to 2-sided alternative hypothesis setup.

But works for either proportion "p" or mean "mu". In fact this correspondence is valid in much wider context.

STA 291 - Lecture 27

25

Confidence intervals:

Interpretation, coverage probability, confidence level

Student t-confidence interval

STA 291 - Lecture 27

26

Attendance Survey Question

- Please write down your name and section number
- Today's Questions
- DO you like to use software in sta291?

STA 291 - Lecture 27

27

Exam II curve: conversion formula

- If your original score is 83 or above, then converted score is = 90+(x-83)10/17
- If your original score is 71 → 82, then converted score is = 80+(x-71)9/11
- If your original score is 59 → 70, then converted score is = 70+(x-59)9/11
- If your original score is 48 → 58, then converted score is 60+(x-48)9/10
- If your original score is 1 → 47, then converted score is x 59/47

_	_		

-			
·	· · · · · · · · · · · · · · · · · · ·	·	