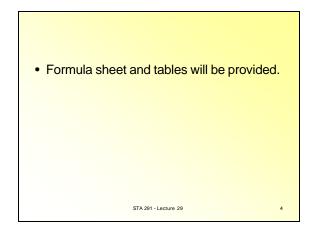


- When: 6:00pm-8:00pm
- Where: св 106

Make-up exam: Friday 10:00am-12:00noon


- Only by prior arrangement
- Room still unknown, watch the web for update, or come to 8th floor POT on Friday
- Update: Makeup room: CB 303

STA 291 - Lecture 29

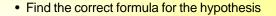
Final Exam, Thursday, May 6

- It will be approx. one and half length long compared to the two midterms. (i.e. if midterm have 20 questions, final will have approx. 30 questions).
- Similar mixture of open answer questions and multiple choice questions, compared to the midterms.
- Covers all the topics (comprehensive). But more on the later (testing hypothesis, confidence interval) materials.

STA 291 - Lecture 29

Some topics we covered

- Testing hypothesis.
- Confidence intervals. (even though it had been covered in midterm exam II)
- Connection between the above 2 topic.
- Use of Z (Normal) table to find probability


STA 291 - Lecture 29

5

6

• When to use t-table instead?

 Setting up the correct hypothesis:
 -- it is always about a population parameter(s)

- Computation of the test statistic, and the P-value (Need to use table)
- What to do if falls outside the range of table?

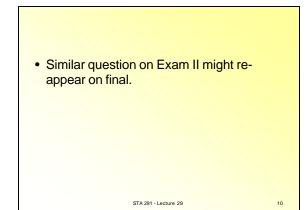
STA 291 - Lecture 29

7

8

9

 Reach a conclusion by compare the Pvalue to the alpha level. (report the Pvalue)


• Potential error (which type?)

Connection between testing hypothesis and confidence interval

STA 291 - Lecture 29

- Given a confidence interval, you can tell if the P-value is above or below alpha
- Given a P-value you can tell if the confidence interval will contain mu0

STA 291 - Lecture 29

Comparing paired Samples: Example													
		Student	1	2	3	4	5	6	7	8	9	10	
		Before	60	73	42	88	66	77	90	63	55	96	
		After	70	80	40	94	79	86	93	71	70	97	
a)	Com	pare the n	nea	n w	eigl	nts	afte	r ar	nd b	oefo	re t	he	drug

- by
- i. finding the difference of the sample means
 ii. finding the mean of the difference scores. Compare. ---(same)
 iii. But SD is different, One SD or two SD's?
- b) Calculate and interpret the P-value for testing whether the mean change equals 0
- c) Compare the mean weights after and before taking the drug by constructing and interpreting a 90% confidence interval for the population mean difference

STA 291 - Lecture 29

Comparing Dependent Samples: Example (contd.)									
Output from Statistical Software Package SAS									
N		10							
Mean		7							
Std De	eviation	5.24933858							
Те	sts for Locati	on: Mu0=0							
Test	-Statistic-	p Val	ue						
Student's t	t 4.216901	Pr > t	0.0022						
Sign	м 4	Pr >= M	0.0215						
Signed Rank	S 25.5	Pr >= S	0.0059						
	STA 291 - Lectur	e 29		12					

Which method to chose?

- Two-year Italian study on the effect of condoms and the spread of AIDS
- Heterosexual couples where one partner was infected with HIV virus
- 171 couples who always used condoms: 3 partners became infected with HIV
- 55 couples who did not always use condoms: 8 partners became infected with HIV
- Test whether the rates are significantly different. Report the P-value and interpret.

STA 291 - Lecture 29

Which Method to Choose?

 A study compares the mean level of contributions to political campaigns in Pennsylvania by registered Democrats, and registered Republicans.

STA 291 - Lecture 29

Which Method to Choose?

- Example: Compare new drug to placebo in a double-blind clinical trial
 - 24 patients
 - Randomly pick 12 assign to placebo
 - The other 12 receive the new drug
 - Research question: Is there a different effect of placebo and new drug on a "response" on, for example, cholesterol, blood parameter, health status, weight,...

STA 291 - Lecture 29

15

13

Which Method to Choose?

- Example: Which of two suntan lotions (labeled X and Y) provides better protection against sunburn
 - 8 subjects expose their backs to the sun for a certain time, protected by suntan lotion

STA 291 - Lecture 29

16

17

- Possible design:
 - Randomly pick 4 subjects use lotion X
 - the other 4 subjects use lotion Y

 Which Method to Choose?
 Example: Which of two suntan lotions (labeled X and Y) provides better protection against sunburn

8 subjects expose their backs to the sun for a certain time, protected by suntan lotion

- Different design:
 - Each of the 8 subjects uses *both* suntan lotions at the same time
 - one lotion on the left side of the back, the other on the right side (use a coin flip to decide which side for X)

STA 291 - Lecture 29

Multiple Choice Question

- Which of the following statements are true?
- "95% confidence" means that
 - 95% of the true population parameters are in the confidence interval
 - If we were to repeat the procedure of sampling and calculating confidence intervals from the same population, then 95% of the population parameters are going to be in every calculated interval
 - If we were to repeat the procedure of sampling and calculating confidence intervals from the same population, then 95% of the times our confidence interval will contain the true population parameter

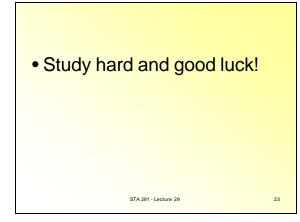
STA 291 - Lecture 29

Multiple choice Q

- If a test turns out to be significant at alphalevel 0.01. (what exactly this mean for the p-value?)
- Will the same test also be significant at 0.05 level?

STA 291 - Lecture 29

- P-value is **NOT** the probability that the H0 is true.
- A small p-value mean that we saw something happened that is *hard to explain* by H0


STA 291 - Lecture 29

20

19

- A large p-value do not automatically means H0 is true. (2 possibilities: either H0 is true or there is too few data/info)
- Another H0 could have even larger Pvalue

Test vs. Confidence IntervalAssume that the p-value is equal to 0.043
for a test of the null hypothesis H0: mu=2,
with two-sided alternative.What conclusion can we make about a 95%
confidence interval for mu?

