STA 291

Lecture 4 Jan 26, 2010

- Methods of Collecting Data
- Survey
- Experiment

Review: Methods of Collecting Data Observational Study vs. Experiment

- An observational study (survey) passively observes individuals and measures variables of interest but does not attempt to influence the responses
- An experiment deliberately imposes actively some treatment on individuals in order to observe their responses
- Population $\leftrightarrow \rightarrow$ Parameter
- Sample $\leftarrow \rightarrow$ Statistics (=estimator)

Sample size n

- Interview how many people?

"PARDNER, A BIG STATE NEEDS A BIG SAMPLE"

STATJSTICS

- Required sample size changes very little regarding the population size. (say from 30 K to 300 Mil etc.)
- Very much depend on the required margin of error.
- Typical example: sample size $n=1500$, margin of error $=2.6 \%$ (assume using SRS)
- Big N the size of population
- Small n the size of sample
- Unless N is very small (comparable to n) the reliability of the survey results depend minimally on N

Collecting Data II --- Experiments

- Example: testing of new treatments or drugs via clinical trials.
- Testing a new product, etc.
- Clinical trials (3 Key features):

Randomized,
Placebo controlled,
Double blinded.

- recruit volunteers that met specific requirements (have certain conditions). Statistician decide how many subjects are enough. (usually 100 to a few 1000 , depending on what you are looking for, what is the budget, how certain the result need be) sTA 299-Lecture4
- Randomly decide if a subject is given the new drug or placebo (sugar pill). Usually 50\%-50\% chance. [randomized]
- Neither the subject nor the attending doctor know which is given to the subject. (to minimize psychological effects, also called placebo effects). Only a high level committee know. [double blind]
- The two groups are usually called Treatment group and Control group or drug group and placebo group.
- The need of the control group, in a comparison.
- The idea is to match as closely as possible the subjects of the two groups. The only difference is the drug.
- The phrase "if everything else remain the same, the use of this drug for XXX patients can reduce the 5 year mortality rate by $\mathrm{X} \%$ " etc. [or "reduce the risk of heart attack by $\mathrm{x} \%$ " etc.]
- Resulting data are analyzed by statistical procedure. (will cover later)
- Conclusion might be "proven beyond reasonable doubt that the new drug is better". Or
- Inconclusive...either no effect or the results too noisy that you do not see it clearly, or
- Clearly No effect.
-What is/are the population(s) here?
-What is/are the population(s) here?
--- there are two:
those patients that treated with drug is usually called the treatment population
those receive placebo usually called control population
- How many samples here? Two.
treatment sample
placebo sample or control sample.
- More than 40% of clinical trials result in abandon of the drug. Very costly. (Hundreds of millions \$)
- Any drug company announcing the abandoning of a (phase III) clinical trial usually result in their stock price going down significantly.
- Vioxx, phen-fen,Purdue Pharma to Withdraw Palladone

- Martha Stewart went to jail because of selling a drug company stock with inside information and then lie about it.
- Info: ImClone's new drug (for cancer) was not statistically proven to be effective, Food and Drug Administration determined.

Why sample?

- Why not just measure all?

Question Wording

- Kalton et al. (1978), England
- Two groups get questions with slightly different wording

Question Wording

- Group 1 is asked: "Are you in favor of giving special priority to buses in the rush hour or not?"
- Group 2 is asked: "Are you in favor of giving special priority to buses in the rush hour or should cars have just as much priority as buses?"

Question Wording

- Result: Proportion of people saying that priority should be given to buses.

	Without reference to cars			With reference to cars			Difference
All respondents	0.69	$(n=1076)$	0.55	$(n=1081)$	0.14		
Women	0.65	$(n=585)$	0.49	$(n=590)$	0.16		
Men	0.74	$(n=491)$	0.66	$(n=488)$	0.08		
Non Car-owners	0.73	$(n=565)$	0.55	$(n=554)$	0.18		
Car owners	0.66	$(n=509)$	0.54	$(n=522)$	0.12		

Question Order

- Two questions asked in different order during the cold war
- (1) "Do you think the U.S. should let Russian newspaper reporters come here and send back whatever they want?" 36% answered "Yes"
- (2) "Do you think Russia should let American newspaper reporters come in and send back whatever they want?"
- When question (2) was asked first, 73% answered "Yes" to question (1)

Stratified Sampling

- Suppose the population can be divided into separate, non-overlapping groups ("strata") according to some criterion.
example: all voters in USA can be divided into Male voters, female voters.
- Select a simple random sample independently from each group.

Why could stratification be useful?

- We may want to draw inference about population parameters for each subgroup
- Sometimes, ("proportional stratified sample") estimators from stratified random samples are more precise than those from simple random samples

Proportional Stratification

- The proportions of the different strata are the same in the sample as in the population
- Mathematically:

Population size N, subpopulation sizes N_{i}
Sample size n, subsample sizes n_{i}

$$
\frac{n_{i}}{n}=\frac{N_{i}}{N}
$$

Proportional Stratification

- Example:
- Total population of the US: 300 Million (2006)
- Population of Kentucky: 4 Million (1.33\%)
- Suppose you take a sample of size $\mathrm{n}=300$ of people living in the US.
- If stratification is proportional, then 4 people in the sample need to be from Kentucky
- Suppose you take a sample of size $\mathrm{n}=1000$. If you want it to be proportional, then 13 people (1.33%) need to be from Kentucky.

Summary: Important Sampling Plans

- Stratified Random Sampling
- The population can be divided into a set of non-overlapping subgroups (the strata or sub-populations)
- SRSs are drawn from each strata
- Cluster and multistage Sampling
- Systematic Sampling
- A value K is specified. Then Randomly select a starting point, after which every Kth observation is included in the sample

Systematic sampling

- Digital music. MP3......sampling rate
- CD quality music Typically sample 44,100 times per second
- SRS has no bias.
- Stratified sampling, if done right, can also be no bias.
- But SRS is hard.

Where Does Bias Occur?

- Selection Bias
- Selection of the sample systematically excludes some part of the population of interest
- Nonresponse Bias
- Occurs when responses are not actually obtained from all individuals selected for inclusion in the sample

Biased or Unbiased Sample?

- Researchers state, "This study was conducted at a large, predominantly White southwestern university. On this campus, American Indians were the smallest racial and ethnic minority student group, consisting of only 2.3% of the student population. Recruited through education and liberal arts classes, students who volunteered to participate in this study completed the research packet and returned it during the next class period. A total of 83 American Indian undergraduates returned completed survey packets."
Gloria, Kurpius (2001), Cultural Diversity and Ethnic Minority Psychology, 7, 88-102

Attendance Survey Question 4

- On a 4"x6" index card (or little piece of paper)
-Please write down your name
- Today's Question:

What is sampling scheme used in the
Digital music? sampling.
[start with S.]

Next Definition: Sampling Error

- Assume you take a random sample of 100 UK students and ask them about their political affiliation (Democrat, Republican, Independent)
- Now take another random sample of 100 UK students
-Will you get the same percentages?
- No, because of sampling variability.
- Also, the result will not be exactly the same as the population percentage, unless you take a "sample" consisting of the whole population of 30,000 students (this would be called a "census")

or if you are very, very lucky

Sampling Error

- Sampling Error is the error that occurs when a statistic based on a sample estimates or predicts the value of a population parameter.
- In random samples, the sampling error can usually be quantified.
- In nonrandom samples, there is also sampling variability, but its extent is not predictable.

