STA 291 Lecture 4 Jan 26, 2010

Methods of Collecting Data

- Survey
- Experiment

Review: Methods of Collecting Data Observational Study vs. Experiment

STA 291 - Lecture 4

1

2

- An observational study (survey) passively observes individuals and measures variables of interest but does not attempt to influence the responses
- An experiment deliberately imposes actively some treatment on individuals in order to observe their responses

STA 291 - Lecture 4

Population ←→ Parameter
Sample ←→ Statistics (=estimator)

- Required sample size changes very little regarding the population size. (say from 30 K to 300 Mil etc.)
- Very much depend on the required margin of error.
- Typical example: sample size n=1500, margin of error = 2.6 % (assume using SRS)

STA 291 - Lecture 4

Collecting Data II --- Experiments

• Example: testing of new treatments or drugs via clinical trials.

STA 291 - Lecture 4

8

• Testing a new product, etc.

 Clinical trials (3 Key features): <u>Randomized</u>, <u>Placebo controlled</u>, <u>Double blinded</u>.

 recruit volunteers that met specific requirements (have certain conditions). Statistician decide how many subjects are enough. (usually 100 to a few 1000, depending on what you are looking for, what is the budget, how certain the result need be) STA 291-Lecture 4

- Randomly decide if a subject is given the new drug or placebo (sugar pill). Usually 50%-50% chance. [randomized]
- Neither the subject nor the attending doctor know which is given to the subject. (to minimize psychological effects, also called placebo effects). Only a high level committee know. [double blind]

STA 291 - Lecture 4

- The two groups are usually called Treatment group and Control group or drug group and placebo group.
- The need of the control group, in a comparison.

• The idea is to match as closely as possible the subjects of the two groups. The *only* difference is the drug.

STA 291 - Lecture 4

 The phrase "if <u>everything else remain the</u> <u>same</u>, the use of this drug for XXX patients can reduce the 5 year mortality rate by X%" etc. [or "reduce the risk of heart attack by x%" etc.]

12

10

- Resulting data are analyzed by statistical procedure. (will cover later)
- Conclusion might be "proven beyond reasonable doubt that the new drug is better". Or
- Inconclusive...either no effect or the results too noisy that you do not see it clearly, or

STA 291 - Lecture 4

13

Clearly No effect.

 More than 40% of clinical trials result in abandon of the drug. Very costly. (Hundreds of millions \$)

- Any drug company announcing the abandoning of a (phase III) clinical trial usually result in their stock price going down significantly.
- Vioxx, phen-fen,Purdue Pharma to Withdraw Palladone

STA 291 - Lecture 4

- Martha Stewart went to jail because of selling a drug company stock with inside information and then lie about it.
- Info: ImClone's new drug (for cancer) was not statistically proven to be effective, Food and Drug Administration determined.

Question Wording

- Group 1 is asked: "Are you in favor of giving special priority to buses in the rush hour or not?"
- Group 2 is asked: "Are you in favor of giving special priority to buses in the rush hour or should cars have just as much priority as buses?"

Question Wording

 Result: Proportion of people saying that priority should be given to buses.

	Without reference to cars		With reference to cars		Difference	
All respondents	0.69	(n=1076)	0.55	(n=1081)	0.14	
Women	0.65	(n=585)	0.49	(n=590)	0.16	
Men	0.74	(n=491)	0.66	(n=488)	0.08	
Non Car-owners	0.73	(n=565)	0.55	(n=554)	0.18	
Car owners	0.66	(n=509)	0.54	(n=522)	0.12	
STA 291 - Lecture 4						22

Question Order

- Two questions asked in different order during the cold war
- (1) "Do you think the U.S. should let Russian newspaper reporters come here and send back whatever they want?" 36% answered "Yes"
- (2) "Do you think Russia should let American newspaper reporters come in and send back whatever they want?"
- When question (2) was asked first, 73% answered "Yes" to question (1)

STA 291 - Lecture 4

Stratified Sampling

 Suppose the population can be divided into separate, non-overlapping groups ("strata") according to some criterion.

example: all voters in USA can be divided into Male voters, female voters.

 Select a simple random sample independently from each group.

STA 291 - Lecture 4

24

Why could stratification be useful?

- We may want to draw inference about population parameters for each subgroup
- Sometimes, ("proportional stratified sample") estimators from stratified random samples are more precise than those from simple random samples

STA 291 - Lecture 4

Proportional Stratification

- The proportions of the different strata are the same in the sample as in the population
- Mathematically:

Population size N, subpopulation sizes N_i Sample size n, subsample sizes n_i

$$\frac{n_i}{n} = \frac{N_i}{N}$$

STA 291 - Lecture 4

Proportional Stratification

• Example:

- Total population of the US: 300 Million (2006)
- Population of Kentucky: 4 Million (1.33%)
- Suppose you take a sample of size n=300 of people living in the US.
- If stratification is proportional, then 4 people in the sample need to be from Kentucky
- Suppose you take a sample of size n=1000. If you want it to be proportional, then 13 people (1.33%) need to be from Kentucky.

STA 291 - Lecture 4

25

Where Does Bias Occur?

Selection Bias

 Selection of the sample systematically excludes some part of the population of interest

Nonresponse Bias

 Occurs when responses are not actually obtained from all individuals selected for inclusion in the sample

STA 291 - Lecture 4

Biased or Unbiased Sample?

 Researchers state, "This study was conducted at a large, predominantly White southwestern university. On this campus, American Indians were the smallest racial and ethnic minority student group, consisting of only 2.3% of the student population. Recruited through education and liberal arts classes, students who volunteered to participate in this study completed the research packet and returned it during the next class period. A total of 83 American Indian undergraduates returned completed survey packets."

Gloria, Kurpius (2001), Cultural Diversity and Ethnic Minority Psychology, 7, 88-102 STA 291 - Lecture 4

Attendance Survey Question 4

- On a 4"x6" index card (or little piece of paper)
 - -Please write down your name
 - -Today's Question:

What is sampling scheme used in the Digital music? _____ sampling. [start with S.]

33

31

Next Definition: Sampling Error

- Assume you take a random sample of 100 UK students and ask them about their political affiliation (Democrat, Republican, Independent)
- Now take <u>another</u> random sample of 100 UK students

STA 291 - Lecture 4

Will you get the same percentages?

- No, because of sampling variability.
- Also, the result will not be exactly the same as the population percentage, unless you take a "sample" consisting of the whole population of 30,000 students (this would be called a "census")

STA 291 - Lecture 4

or if you are very, very lucky

Sampling Error

- Sampling Error is the error that occurs when a statistic based on a sample estimates or predicts the value of a population parameter.
- In random samples, the sampling error can usually be quantified.
- In nonrandom samples, there is also sampling variability, but its extent is not predictable.

STA 291 - Lecture 4

36

34