STA 291 Lecture 5 Chap 4

- Graphical and Tabular Techniques for categorical data
- Graphical Techniques for numerical data

STA 291 - Lecture 5

Review: Stratified Sampling

 Suppose the population can be divided into non-overlapping groups ("strata") according to some criterion.

Example: All voters divided into male voters and female voters.

 Select a Simple Random Sample independently from each group.

STA 291 - Lecture 5

2

3

• how it is different from SRS?

- (SRS) = any possible selection equally likely
- Any selection got discriminated/eliminated here in stratified sampling?

Examples of Stratified Sampling

- The population is divided into male/female subpopulations (Two strata). Within each subpopulation do an SRS.
- The population is divided into [Whites, Blacks, Hispanics, Asians, Others.] Five strata. Within each, do a SRS.

Smaller groups may be **over-sampled**: For example: select from each group a SRS of same size *n*=500.

STA 291 - Lecture 5

4

5

How could stratification be useful?

- We may want to draw inference about population parameters for each subgroup
- When done right, estimators from stratified random samples are more precise than those from Simple Random Samples

STA 291 - Lecture 5

Important Sampling Plans: SRS and variations

Simple Random Sampling (SRS)

- Each possible sample has the same probability of being selected.
- Stratified Random Sampling
 - The population can be divided into a set of nonoverlapping subgroups (the strata)
 SRSs are drawn from each strata
- Systematic Sampling (eg. Digital music)

STA 291 - Lecture 5

Sampling Error

- Assume you take a SRS of 100 UK students and ask them about their political affiliation (Democrat, Republican, Independent)
- Now take <u>another</u> SRS of 100 UK students

STA 291 - Lecture 5

7

8

9

Will you get the same percentages?

- No, because of sampling variability.
- Also, the result will not be exactly the same as the population percentage, unless you take a "sample" consisting of the whole population of 30,000 students (this would be called a "census")

STA 291 - Lecture 5

or if you are very lucky

Sampling Error

- Sampling Error is the error that occurs when a statistic based on a sample estimates or predicts the value of a population *parameter*.
- In SRS, stratified RS, the sampling error can usually be quantified.
- In other sampling plans, there is also sampling variability, but its extent is not predictable.

Nonsampling Error

- bias due to question wording, question order,
- nonresponse (people refuse to answer),

Chapter 4 Display and Describe Categorical Data

STA 291 - Lecture 5

- Summarize data using *graphs, tables*, and *numbers*.
- Condense the information from the dataset

STA 291 - Lecture 5

• Bar chart, Pie chart, scatter plot

Bar Graph

- features:
 - The bars are usually separated to emphasize that the variable is categorical rather than quantitative
 - For nominal variables (no natural ordering), order the bars by frequency, except possibly for a category "other" that is always last

10

Pie Chart (Nominal/Ordinal Data) First Step: Create a Frequency Distribution				
Highest Degree	Frequency (Number of Employees)	Relative Frequency		
Grade School	15			
High School	200			
Bachelor's	185			
Master's	55			
Doctorate	70			
Other	25			
Total	550			
	STA 291 - Lecture 5	13		

Pie Chart • Pie Chart: Pie is divided into slices; The area of each slice is proportional to the frequency of each class.					
Highest Degree	ighest Degree Relative Frequency Angle (= Rel. Freq. x 360**)				
Grade School	15/550 = .027	9.72			
High School	200/550 = .364 131.04				
Bachelor's	185/550 = .336	120.96			
Master's	55/550 = .1	36.0			
Doctorate	70/550 = .127 45.72				
Other	25/550 = .045	16.2			
	STA 291 - Lecture 5	16			

Dynamic graph: graph change over time – movie or animation.
Try watch more of those movies at http://www.gapminder.org

STA 291 - Lecture 5

Distribution of a (continuous, numerical) variable

- Histogram
- Smoothed histogram distribution

STA 291 - Lecture 5

21

Homework 2

• Due Tuesday next week (Feb 5,11 PM).

STA 291 - Lecture 4

25

• Online homework assignment.

Histogram (for continuous numerical type data)

- Divide the range of possible values into many (contiguous, non-overlap) intervals, then count how many times data falls into each interval.
- Plot based on this table is called histogram.

|--|

Alabama	11.6	Alaska	9.0
Arizona	8.6	Arkansas	10.2
California	13.1	Colorado	5.8
Connecticut	6.3	Delaware	5.0
DC	78.5	Florida	8.9
Georgia	11.4	Hawaii	3.8

Difficult to see the "big picture" from these numbers

40

41

- Try to condense the data...
 - STA 291 Lecture 5

Frequency Distribution				
Murder Rate	Frequency			
0-2.9	5			
3-5.9	16			
6-8.9	12			
9-11.9	12			
12-14.9	4			
15-17.9	0			
18-20.9	1			
>21	1			
Total	51			
STA 291 -	Lecture 5 42			

Frequency Distribution

- Use intervals of same length (wherever possible)
- Intervals must be mutually exclusive: Any observation must fall into one and only one interval

STA 291 - Lecture 5

43

44

- Relative frequency for an interval: The proportion of sample observations that fall in that interval
- Sometimes, percentages are preferred to relative frequencies

Frequency and Relative Frequency
and Percentage Distribution

Murder Rate	Frequency	Relative Frequency	Percentage
0-2.9	5	.10	10
3-5.9	16	.31	31
6-8.9	12	.24	24
9-11.9	12	.24	24
12-14.9	4	.08	8
15-17.9	0	0	0
18-20.9	1	.02	2
>21	1	.02	2
Total	51	1	100
STA 291 - Lecture 5			

Frequency Distributions

- Notice that we had to group the observations into intervals because the variable is measured on a continuous scale
- For discrete data, grouping may not be necessary (except when there are many categories)

STA 291 - Lecture 5

46

47

Histogram (for continuous numerical Data)

- Use the numbers from the frequency distribution to create a graph
- Draw a bar over each interval, the height of the bar represents the (relative) frequency for that interval
- Bars should be touching; I.e., equally extend the width of the bar at the upper and lower limits so that the bars are touching.

Histogram

- Usually produced by software. We need to understand what they try to say.
- http://www.shodor.org/interactivate/activiti es/histogram/

STA 291 - Lecture 5