STA 291

Lecture 5 Chap 4

- Graphical and Tabular Techniques for categorical data
- Graphical Techniques for numerical data
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Review: Stratified Sampling

- Suppose the population can be divided
\qquad into non-overlapping groups ("strata") according to some criterion. \qquad
Example: All voters divided into male voters and female voters.
- Select a Simple Random Sample independently from each group.
- how it is different from SRS?
- $(\mathrm{SRS})=$ any possible selection equally likely
- Any selection got discriminated/eliminated here in stratified sampling?

Examples of Stratified Sampling

- The population is divided into male/female subpopulations (Two strata). Within each subpopulation do an SRS.
- The population is divided into [Whites, Blacks, Hispanics, Asians, Others.] Five strata. Within each, do a SRS.
Smaller groups may be over-sampled: For example: select from each group a SRS of same size $n=500$.

How could stratification be useful?

- We may want to draw inference about population parameters for each subgroup
- When done right, estimators from stratified random samples are more precise than those from Simple Random Samples

Important Sampling Plans: SRS and variations

- Simple Random Sampling (SRS)
- Each possible sample has the same probability of being selected. \qquad
- Stratified Random Sampling
- The population can be divided into a set of nonoverlapping subgroups (the strata)
- SRSs are drawn from each strata
- Systematic Sampling (eg. Digital music)

Sampling Error

- Assume you take a SRS of 100 UK students and ask them about their political affiliation (Democrat, Republican, Independent)
- Now take another SRS of 100 UK students
-Will you get the same percentages?
- No, because of sampling variability. \qquad
- Also, the result will not be exactly the same as the population percentage, unless you take a "sample" consisting of the whole population of 30,000 students (this would be called a "census") or if you are very lucky

Sampling Error

- Sampling Error is the error that occurs \qquad when a statistic based on a sample estimates or predicts the value of a population parameter.
- In SRS, stratified RS, the sampling error \qquad can usually be quantified.
- In other sampling plans, there is also sampling variability, but its extent is not predictable.

Nonsampling Error

- bias due to question wording, question order,
- nonresponse (people refuse to answer),

Chapter 4 Display and Describe

 Categorical Data- Summarize data using graphs, tables, and numbers.
- Condense the information from the dataset
- Bar chart, Pie chart, scatter plot

Bar Graph

- features:
- The bars are usually separated to emphasize that the variable is categorical rather than quantitative
- For nominal variables (no natural ordering), order the bars by frequency, except possibly for a category "other" that is always last

Pie Chart (Nominal/Ordinal Data)

 First Step: Create a Frequency Distribution| Highest Degree | Frequency
 (Number of Employees) | Relative
 Frequency |
| :---: | :---: | :---: |
| Grade School | 15 | |
| High School | 200 | |
| Bachelor's | 185 | |
| Master's | 55 | |
| Doctorate | 70 | |
| Other | 25 | |
| Total | 550 | |
| | | |

- http://en.wikipedia.org/wiki/Bar_chart

Pie Chart		
- Pie Chart: Pie is divided into slices; The area of each slice is proportional to the frequency of each class.		
Highest Degree	Relative Frequency	Angle (= Rel. Freq. \times 360${ }^{-}$)
Grade School	$15 / 550=.027$	9.72
High School	$200 / 550=.364$	131.04
Bachelor's	$185 / 550=.336$	120.96
Master's	$55 / 550=.1$	36.0
Doctorate	$70 / 550=.127$	45.72
Other	$25 / 550=.045$	16.2
STA 291 - Lecture 5×16		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Pie Chart for Highest Degree \qquad Achieved

Scatter plot

\qquad

- Plots with two variables \qquad
(reveal the relationship between the two variables)
\qquad
\qquad
\qquad
\qquad
\qquad
- Dynamic graph: graph change over time - \qquad movie or animation.
- Try watch more of those movies at http://www.gapminder.org

Distribution of a (continuous, numerical) variable

- Histogram
- Smoothed histogram - distribution

\qquad
\qquad

Frequency Tables

- Suppose the variable can only take one of \qquad 5 possible values.
- We can condense a large sample ($\mathrm{n}=2000$) to

value	1	2	3	4	5
frequency	365	471	968	134	62

Contingency tables

- More complicated tables
- by rows and columns (cross tabulation)

Homework 2

- Due Tuesday next week (Feb 5,11 PM).
- Online homework assignment.

Attendance Survey Question 5

- On a 4"x6" index card (or little piece \qquad of paper)
-Please write down your name and section number.
-Today's Question: What is "SRS" stands for in statistical observational study?

> vs. Females
> $\mathbf{1 9 2 0}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Histogram of Numbers of Males vs. Females \qquad
1930 \qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Histogram of Numbers of Males vs. Females 1960

Histogram of Numbers of Males "1970

Histogram of Numbers of Males

vs. Females
1990

- Dynamic graph: graph changes over time
\qquad
\qquad
\qquad
\qquad
http://www.gapminder.org/videos/ted-
\qquad seemingly-impossible-is-possible/

Histogram (for continuous

 numerical type data)- Divide the range of possible values into many (contiguous, non-overlap) intervals, then count how many times data falls into each interval.
- Plot based on this table is called histogram.

- Difficult to see the "big picture" from these numbers
- Try to condense the data...

Frequency Distribution

- A listing of intervals of possible values for \qquad a variable
- Together with a tabulation of the number of observations in each interval.

Frequency Distribution	
Murder Rate Frequency $0-2.9$ 5 $3-5.9$ 16 $6-8.9$ 12 $9-11.9$ 12 $12-14.9$ 4 $15-17.9$ 0 $18-20.9$ 1 >21 1 Total 51 	

Frequency Distribution

- Use intervals of same length (wherever possible)
- Intervals must be mutually exclusive: Any observation must fall into one and only one interval

Relative Frequencies

- Relative frequency for an interval: The proportion of sample observations that fall in that interval \qquad
- Sometimes, percentages are preferred to relative frequencies

Frequency and Relative Frequency and Percentage Distribution

Murder Rate	Frequency	Relative Frequency	Percentage
$0-2.9$	5	.10	10
$3-5.9$	16	.31	31
$6-8.9$	12	.24	24
$9-11.9$	12	.24	24
$12-14.9$	4	.08	8
$15-17.9$	0	0	0
$18-20.9$	1	.02	2
>21	1	.02	2
Total	51	1	100

\qquad
\qquad
\qquad
\qquad
\qquad

STA 291 - Lecture 5 \qquad

Frequency Distributions

- Notice that we had to group the observations into intervals because the variable is measured on a continuous scale
- For discrete data, grouping may not be necessary (except when there are many categories)

Histogram (for continuous

 numerical Data)- Use the numbers from the frequency distribution to create a graph
- Draw a bar over each interval, the height \qquad of the bar represents the (relative) frequency for that interval
- Bars should be touching; I.e., equally extend the width of the bar at the upper and lower limits so that the bars are touching.

Histogram

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Histogram w/o DC
Histogram of the Murder Data w/o DC

Histogram

- Usually produced by software. We need to understand what they try to say.
- http://www.shodor.org/interactivate/activiti es/histogram/

