STA 291 Lecture 6

- Randomness and Probability
- Abstract /mathematical but necessary because this is the mathematical theory underlying all statistical inference
- Fundamental concepts that are very important to understanding Sampling Distribution, Confidence Interval, and P-Value
- Our goal is to learn the rules involved with assigning probabilities to events, and related calculations after assign probability.

Probability: Basic Terminology

- Events: -- where probability live. usually denoted by A, B, C, etc. (We say probability of event A etc)
- Sample space is the largest event. S
- Sample Space: The collection of all possible outcomes of an experiment.
- Event: A specific collection of outcomes.
- Simple Event: An event consisting of exactly one outcome.
- Each event is given (assign) a probability: a number between 0 and 1, inclusive. Denoted by $\mathrm{P}(\mathrm{A})$
- Could assign probability using a table (if we can list all events with their probabilities)
- Otherwise, (with too many events) we need a rule of assign probability

Sample Spaces, and Events

Examples of experiment/sample space:

1. Flip a coin: \{head, tail\}
2. Flip a coin 3 times: $\{\mathrm{HHH}, \mathrm{HHT}, \ldots . \mathrm{TTT}\}$
3. Roll a die: $\{1,2,3,4,5,6\}$
4. Draw and record opinion of a SRS of size 50 from a population
5. Time your commuting time in a weekday morning.
6. Score of A football game between two chosen teams
7. Give AIDS patient a treatment and record how long he/she lives.

- There are often more than one way to assign probability to a sample space. (could be infinitely many ways)
- Statistical techniques we will learn later help identify which one "reflecting the truth".
- In Chap. 5 here we do not identify which probability is more "true" but just learn the consequences of a (legitimate) probability assignment.

legitimate probability

- $P(A)$ has to be a number between 0 and 1 , inclusive (rule 1)
- The probability of the sample space S must be 1: $\mathrm{P}(\mathrm{S})=1 \quad$ (rule 2)
- When we are able to list all simple events,
O_{i} The summation over i for $P\left(O_{i}\right)$ must be 1

$\Sigma \mathrm{P}\left(\mathrm{O}_{i}\right)=1$

$P(A)$ could be computed by sum of $P\left(O_{i}\right)$ over those O's inside A.

Assigning Probabilities to Events

Example:

- - equally likely outcomes (classical approach)
- - relative frequency (using historical data)
- -- Subjective
- Monty Hall show: chance of winning is $1 / 3$ or $1 / 2$?
- Both are legitimate, but only one is true.

Equally Likely Approach

- The equally likely outcomes approach usually relies on symmetry/geometry to assign probabilities to events.
- Suppose that an experiment has only n (distinct) outcomes. The equally likely approach to probability assigns a probability of $1 / n$ to each of the outcomes.
- Further, if an event A is made up of m simple outcomes, then $\operatorname{Prob}(A)=P(A)=m / n$.
- Notice the notation: event is denoted by capital letter A
- The probability assigned to this event is denoted by $\mathrm{P}(\mathrm{A})$ or $\operatorname{Pr}(\mathrm{A})$ or $\operatorname{Prob}(\mathrm{A})$
- We say $P($ win $)=0.5$ or $P($ win $)=0.65$ etc.

Assign Probability: Equally Likely Approach

- Examples:

1. Roll a fair die, the sample space is

$$
\{1,2,3,4,5,6\}
$$

There are 6 outcomes in sample space, each one get a probability of $1 / 6$.

- \quad The probability of getting " 5 " is $1 / 6$.
-- The probability of getting \{" 3 " or above $\}$ is $4 / 6$.

This does not mean that whenever you roll the die 6 times, you definitely get exactly one " 5 "

- One free throw by John Wall:
- Outcomes: \{hit, miss\}
- Two free throw: $\mathrm{S}=\{$ hit-hit, hit-miss, miss-hit, miss-miss\}
- Flip a fair coin twice: sample space = $\{(H, H),(H, T),(T, H),(T, T)\}$
There are four pairs. Each one gets $1 / 4$ probability.

Let $A=\{$ two heads $\}, \quad P(A)=1 / 4$
Let $A=\{$ at least a head $\}, P(A)=3 / 4$

- For a population of size 30 , using SRS, we select two individuals.
- There are 435 different choices. i.e. There are 435 outcomes in the sample space.
- Each one has probability $1 / 435=0.00229$
- How do I know there are 435 different choices?
- $435=(30 \times 29) / 2$
- The first interview has 30 choices, the second has 29. (no repeats)
- But \{John, Jane\} is the same as \{Jane, John\}. This is the reason of dividing by 2
- Method of counting: number of ways to chose m out of n possible. (result not ordered)
- Lottery game "Pick 3". You pick 3 digits, each range from 0 to 9
- There are 1000 different choices. Sample space has 1000 outcomes in it.
- To win the game "straight" you have to match all 3 number in the correct order.
- There is only one way (one outcome) to win. The probability is $1 / 1000=0.001$
- For "straight", a play cost you \$1
- Do you still want to play?
- To win the game "front pair", you need to match the first 2 out of 3 numbers.
- there are 9 ways to win "front pair", [the 10 th would be the straight win, not counted as front pair] the probability is 9/1000. We write
$P($ front pair $)=9 / 1000$
-Rule $3 \quad P(A)=1-P(A$-complement $)$

$$
P(A)=1-P\left(A^{C}\right)
$$

Complement

- Let A denote an event.
- The complement of an event A : All the outcomes in the sample space S that do not belong to the event A.
The complement of A is denoted by $A^{C}=$ green
A = blue

Law of Complements:

Homework 3

- The next online homework assignment will be available later today.
- Due Feb 11, (at 11 PM)

Attendance Survey Question 10

- On a 4"x6" index card
- Please write down your name and section number
- Today's Question: Have You ever played

Pick 3 of Lotto Kentucky
Powerball
None of above

