## STA 291 Lecture 7

- Probability [rules]
- Working with events

STA 291 - Lecture 7

# Review Probability: Basic Terminology

- Sample Space: [ denoted by S ] The collection of all possible outcomes of an experiment.
- Event: [ denoted by A, B, C, etc ] a specific collection of outcomes.
- Simple Event: An event consisting of just one outcome.

STA 291 - Lecture 7

• Rule 1:  $0 \le P(A) \le 1$ 

• Rule 2: P(S) =1

• Rule 3:  $P(A) = 1 - P(A^c)$ 

STA 291 - Lecture 7

## Assigning Probabilities to Events

- The probability of an event is nothing more than a value between 0 and 1. In particular:
- --- 0 implies that the event will not occur
- --- 1 implies that the event will occur for sure
- Never have probability > 1, never < 0.</li>

STA 291 - Lecture 7

## **Equally Likely Approach**

- Examples:
- A deck of 52 cards, well shuffled. Pick one. Let event A={ace, any suits}, P(A) =
- 2. Roll a fair die
  - The probability of the event "4 or above" is
- Roll a fair die 2 times: there are 6x6=36 possible outcomes. Each one has 1/36 probability

STA 291 - Lecture 7

## Counting method

- Suppose at every step, you always have k choices, and there are m steps
- Total number of choices = kxkxk...k = k to m power
- Example: pick 3 lotto [ 10 to 3 power ]
- Roll a die 3 times [6 to 3 power]

STA 291 - Lecture 7

| <br> |              |   |
|------|--------------|---|
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
| <br> |              |   |
|      |              |   |
| <br> | <br>         |   |
|      | <br>         | _ |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
| <br> | <br>         |   |
| <br> | <br><u> </u> |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |
|      |              |   |

## Example: using rule 3

- Flip a fair coin 7 times
- A = { at least one head }
- P(A) =1 1/128 = 127/128

STA 291 - Lecture 7

## More rules

- Rule for union/sum (a general rule and a simplified rule)
- Rule for intersection/product (a general rule and a simplified rule)

STA 291 - Lecture 7

## Union and Intersection of events

- Let A and B denote two events.
- The union of two events: All the outcomes in Sthat belong to at least one of A or B or both.
   The union of A, B is denoted by A∪B
- The intersection of two events: All the outcomes in Sthat belong to both A and B.
   The intersection of A and B is denoted by A∩B

STA 291 - Lecture 7

|   |    | ٠ |   |  |
|---|----|---|---|--|
| • | ١. | 2 | , |  |
|   |    |   |   |  |



# Complement • Let A denote an event. • The complement of an event A: All the outcomes in the sample space S that do not belong to the event A. The complement of A is denoted by $A^C = \text{green}$ A = blueLaw of Complements: $R(A^C) = -PA$ STA 291 - Lecture A

- Example: If the probability of getting a "working" computer is 0.85,
- What is the probability of getting a defective computer?
- Example if the probability of hitting the free throw is 0.68, then what is the probability of missing?

STA 291 - Lecture 7

## **Disjoint Events**

- Let A and B denote two events.
- Disjoint (or mutually exclusive) events: A and Bare said to be disjoint if there are no outcomes common to both A and B.
- Using notation, this is written as  $A \cap B = \emptyset$
- Note: The last symbol, denotes the null set or the empty set.

STA 291 - Lecture 7

13

- · A and B are disjoint,
- A and B are mutually exclusive, no overlap



STA 291 - Lecture 7

14

## **Probability of Disjoint Events**

Let A and B be two events in a sample space S. The probability of the union of two disjoint (mutually exclusive) events A and B is





STA 291 - Lecture 7

- Deck of 52 cards
- Let A = get an Ace
- Let B = get a Queen
- Then A, B are disjoint. Therefore P(A or B) = P(A) + P(B)
- If C = get a spade. Is A, C disjoint?

STA 291 - Lecture 7

16

## Additive Law of Probability

Let A and B be two events in a sample space S. The probability of the union of A and B is

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ .



STA 291 - Lecture 7

17

# Using Additive Law of Probability

**Example:** At State U, all first-year students must take chemistry and math. Suppose 15% fail chemistry, 12% fail math, and 5% fail both.

Suppose a first-year student is selected at random. What is the probability that student selected failed at least one of the courses?

What is the probability that he/she pass both?



STA 291 - Lecture 7

## Rules for intersection

- (A shortcut for independent events)
- If two events A, B are 'independent' then

$$P(A \cap B) = P(A)P(B)$$
.

STA 291 - Lecture 7

19

## Independent

 How do we know if events are independent?

STA 291 - Lecture 7

20

• If A and B are not independent, then

$$P(A \cap B) = P(A)P(B \mid A)$$
.

STA 291 - Lecture 7

| <ul> <li>Flip a fair coin two times</li> <li>Sample space = { HH, HT, TH, TT }</li> </ul> |   |
|-------------------------------------------------------------------------------------------|---|
| Using equal likely probability assignment                                                 |   |
| • A = { exactly one H }                                                                   |   |
| • P(A) =                                                                                  |   |
| Cannot use this for biased coins                                                          |   |
| STA 291 - Lecture 7 22                                                                    |   |
|                                                                                           |   |
|                                                                                           | 1 |
|                                                                                           |   |
| Outcomes, and their probabilities in a                                                    |   |
| sample space may be given in a contingency table. (r x c table)                           |   |
| Example                                                                                   |   |
|                                                                                           | - |
|                                                                                           |   |
| STA 291 - Lecture 7 23                                                                    |   |
|                                                                                           |   |
|                                                                                           | 1 |
|                                                                                           |   |
|                                                                                           |   |
| Last digit of your Social Security number                                                 |   |
| [most likely random and equally likely to be 0, 1, 2,, 9]                                 |   |
|                                                                                           |   |
|                                                                                           |   |
| STA 291 - Lecture 7 24                                                                    |   |

# Attendance Survey Question 7 On a 4"x6" index card - Please write down your name and section number - Today's Question: Your prediction of Super Bowl this Sunday \_\_\_Indianapolis

\_\_New Orleans

STA 291 - Lecture 7