STA 291
Lecture 7

- Probability [rules]
- Working with events

Review

Probability: Basic Terminology

- Sample Space: [denoted by S] The collection of all possible outcomes of an experiment.
- Event: [denoted by A, B, C, etc] a specific collection of outcomes.
- Simple Event: An event consisting of just one outcome.
- Rule 1: $0 \leq P(A) \leq 1$
-Rule 2: $\quad P(S)=1$
- Rule 3: $P(A)=1-P\left(A^{c}\right)$

Assigning Probabilities to Events

- The probability of an event is nothing more than a value between 0 and 1 . In particular:
--- 0 implies that the event will not occur
--- 1 implies that the event will occur for sure
Never have probability >1, never <0.

Equally Likely Approach

- Examples:

1. A deck of 52 cards, well shuffled. Pick one. Let event $A=\{$ ace, any suits $\}, \quad P(A)=$
2. Roll a fair die

- The probability of the event " 4 or above" is
- Roll a fair die 2 times: there are $6 \times 6=36$ possible outcomes. Each one has 1/36 probability

STA 291 - Lecture 7

Counting method

- Suppose at every step, you always have \mathbf{k} choices, and there are \mathbf{m} steps
- Total number of choices $=\mathrm{kxk} \times \mathrm{k} \ldots \mathrm{k}=$ k to m power
- Example: pick 3 lotto [10 to 3 power]
- Roll a die 3 times [6 to 3 power]

Example: using rule 3

- Flip a fair coin 7 times
- $A=\{$ at least one head $\}$
- $P(A)=1-1 / 128=127 / 128$

More rules

- Rule for union/sum (a general rule and a \qquad simplified rule)
- Rule for intersection/product (a general rule and a simplified rule)

Union and Intersection of events

- Let A and B denote two events.
- The union of two events: All the outcomes in S that belong to at least one of A or B or both. The union of A, B is denoted by $A \cup B$
- The intersection of two events: All the outcomes in S that belong to both A and B. The intersection of A and B is denoted by $A \cap B$
- A Union $B=$ pink, blue and purple
- A intersect B = purple

STA 291 - Lecture 7 10

Complement

- Let A denote an event.
- The complement of an event A : All the outcomes in the sample space S that do not belong to the event A. The complement of A is denoted by $A^{C}=$ green
A = blue

Law of Complements:

$$
P\left(A^{G}\right)=1-P A
$$

S

- Example: If the probability of getting a "working" computer is 0.85 ,
- What is the probability of getting a defective computer?
- Example if the probability of hitting the
free throw is 0.68 , then what is the probability of missing?

Disjoint Events

- Let A and B denote two events.
- Disjoint (or mutually exclusive) events: A and B are said to be disjoint if there are no outcomes common to both A and B.
- Using notation, this is written as $A \cap B=\varnothing$
- Note: The last symbol, \varnothing denotes the null set or the empty set.
- A and B are disjoint,
- A and B are mutually exclusive, no overlap

Probability of Disjoint Events

Let A and B be two events in a sample space S. The probability of the union of two disjoint (mutually exclusive) events A and B
is

$$
P(A \cup B)=P(A)+P(B)
$$

STA 291 - Lecture 7

\qquad

- Deck of 52 cards
- Let $A=$ get an Ace
- Let $B=$ get a Queen
- Then A, B are disjoint. Therefore $P(A$ or $B)=P(A)+P(B)$
- If $C=$ get a spade. Is A, C disjoint?

Additive Law of Probability

Let A and B be two events in a sample space S . The probability of the union of A and B is

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B) .
$$

Using Additive Law of Probability

Example: At State U, all first-year students must take
chemistry and math. Suppose 15% fail chemistry, 12% fail math, and 5\% fail both.
Suppose a first-year student is selected at random. What is the probability that student selected failed at least one of the courses?
What is the probability that he/she pass both?

S

Rules for intersection

- (A shortcut for independent events)
- If two events A, B are 'independent' then

$$
P(A \cap B)=P(A) P(B) .
$$

Independent

- How do we know if events are independent?
- If A and B are not independent, then

$$
P(A \cap B)=P(A) P(B \mid A) .
$$

- Flip a fair coin two times
- Sample space $=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
- Using equal likely probability assignment
- $A=\{$ exactly one $H\}$
- $P(A)=$
- Cannot use this for biased coins
- Outcomes, and their probabilities in a \qquad sample space may be given in a contingency table. (rxctable) \qquad
\qquad
- Example

Attendance Survey Question 7

- On a 4 "x6" index card
-Please write down your name and section number
-Today's Question:
Your prediction of Super Bowl this Sunday Indianapolis
New Orleans

