- Probability
- Probability Rules
- Joint and Marginal Probability

Union and Intersection

- Let A and B denote two events.
- The union of two events:
- The intersection of two events:

$$
A \cap B
$$

Complement

- Let A denote an event.
- The complement of an event A : A^{C}

Law of Complements:

$$
P(A)=1-P\left(A^{c}\right)
$$

Additive Law of Probability

Let A and B be two events in a sample space S. The probability of the union of A and B is

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Let A and B be two events in a sample space S . The probability of the union of two disjoint (mutually exclusive) events A and B is

$$
P(A \cup B)=P(A)+P(B) .
$$

Using Additive Law of Probability

Example: At State U, all first-year students must take chemistry and math. Suppose 15% fail chemistry, 12% fail math, and 5\% fail both. Suppose a first-year student is selected at random. What is the probability that student selected failed at least one of the courses? What is the probability that student pass both?

Disjoint Events

- Let A and B denote two events.
- Disjoint (mutually exclusive) events:

$$
A \cap B=\varnothing
$$

- No overlap

Probability tables

- Simple table: One row of outcomes, one row of corresponding probabilities.
- $\mathrm{R} \times \mathrm{C}$ probability tables: when the outcomes are classified by two features
- Gender and support President Obama?
- Smoker? And Lung disease?
- Age group and support Obama?

Example: Smoking and Lung Disease

	Lung Disease	No Lung Disease	Marginal (smoke status)
Smoker	0.12	0.19	0.31
Nonsmoker	0.03	0.66	0.69
Marginal (disease status)	0.15	0.85	1.0

Frequency table and probability table			
	${ }_{\text {Disease }}^{\text {Lung }}$	No Lung Disease	(total) Marginal (smoke status)
Smoker	120	190	
Nonsmoker	${ }^{30}$	${ }^{660}$	
$\begin{aligned} & \text { (total) Marginal } \\ & \text { (disease status) } \end{aligned}$			1000
staral Leatue ${ }^{\text {a }}$			

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Equivalent to a table with 4 entries:

(smoker \& lung disease)	0.12
(smoker \& not lung disease)	0.19
(nonsmoker \& lung disease)	0.03
(nonsmoker \& not lung disease)	0.66

But the $R \times C$ table reads much better

- From the R x C table we can get a table \qquad for smoker status alone, or disease status alone.
- Those are called marginal probabilities

It's a one way street

- Given the joint probability table, we can figure out the marginal probability
- Given the marginal, we may not determine the joint: there can be several different joint tables that lead to identical marginal.

Example: Smoking and Lung Disease

	Lung Disease	Not Lung Disease	Marginal (smoke status)
Smoker	0.02	0.29	0.31
Nonsmoker	0.13	0.56	0.69
Marginal (disease status)	0.15	0.85	

Same marginal, different joint.

Using the table

- $\mathrm{P}($ smoker and lung disease $)=0.02$
- $\mathrm{P}($ smoker or lung disease $)=0.44$
(either by looking at the table
Or using the additive rule for probability)

Independence of events

- May not always hold.
- If and when it hold: With independence, one way street becomes two way street.
- Smoking and lung disease are obviously not independent in reality.

Independence

- If events A and B are independent, then the events A and B have no influence on each other.
- So, the probability of A is unaffected by whether Bhas occurred.

Multiplication rule of probability

If A and B are two independent events, then

$$
P(A \cap B)=P(A) P(B)
$$

- i.e. joint prob. = product of two marginal prob.
\qquad
\qquad
\qquad
\qquad

Conditional Probability

$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, provided $P(B) \neq 0$

- Note: $P(A / B)$ is read as "the probability that A occurs given that B has occurred."

Independent Events

Multiplication Rule for Independent Events: Let A and B be two independent events, then

$$
P(A \cap B)=P(A) P(B) .
$$

Mathematically, if A is independent of B, then: $P(A / B)=P(A)$

Examples:

- Flip a coin twice. What is the probability of observing two heads?
- Flip a coin twice. What is the probability of getting a head and then a tail? A tail and then a head?
- In general, if events A and B are not independent, then the multiplication rule becomes

$$
P(A \cap B)=P(A) P(B \mid A)
$$

Terminology

- $\quad P(A n B)=P(A$ and $B)$

Joint probability of A and B (of the intersection of A and B)

- $P(A / B) \quad$ Conditional probability of A given B
- $P(A) \quad$ (Marginal) probability of A
- If we have the probability table, then \qquad everything can be figured out from the table. NO need to use the rules.
- Only when no table is available, then we may be able to find out some probabilities from some given/known probabilities (a partial table) using rules.
- In homework/exam, you may be given a \qquad probability table, and are asked to verify certain rules.
Or
- Given a partial table, you are asked to use various rules to find the missing probabilities in the table.

Examples

Homework	
strana Leotues	26

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Attendance Survey Question

- On a 4"x6" index card \qquad
-Please write down your name and section number
- Today's Question:
- Is A independent of B in reality?
\qquad
\qquad
$A=\{$ Stock market go up today\};
$B=\{$ snow >3 inch in New York today $\}$
\qquad
\qquad
\qquad

