STA 291 Lecture 9

 Probability Review: multiplication rule and independence

Independent events

• If we know events A and B are independent, then all 3 hold

 $P(A \cap B) = P(A)P(B).$

- P(A|B) = P(A)
- P(B|A) = P(B)

 On the other hand, if we want to check that events A, B are independent, then we may check any one of the three equalities.

How to use independence?

 We might give you an RxC probability table, and ask you to check if events A, B are independent. [you need to verify one of the three identities]

 We might tell you that A, B are independent events, and ask you to compute the probability of a related event. [in the computation, you may use any of the three identities]

STA 291 - Lecture 9

Example: Smoking and Lung Disease I

	Lung Disease	Not Lung Disease	Marginal (smoke status)
Smoker	.12	.19	.31
Nonsmoker	.03	.66	.69
Marginal (disease status)	.15	.85	1.00

- The red probabilities are the joint probabilities
- The green ones are the two marginal probabilities.

Is smoking independent of lung disease?

- Check one of the three equations
- P(smoker) = 0.31
- P(lung disease) = 0.15
- joint probability P("smoker and lung disease") = 0.12

Since $0.12 \neq 0.31 \times 0.15 = 0.0465$ Therefore the two events are not independent

We may also check P(lung disease | smoker) = 0.12 / 0.31 =0.387

This is different from P(lung disease) = 0.15 (in fact this conditional probability increased a lot compared to unconditional)

Therefore "smoker", "lung disease" are not independent

Example II

 Given that events A, B are independent, P(A) = 0.3, P(B) = 0.6.
 Find P(A or B) = ?

$$P(A \cup B) = ?$$

Example of independent

• If the table look like the next one, then the two were independent.

 There, the proportion of disease/nondisease are the same across smokers and nonsmokers.

Example: Smoking and Lung Disease II independent case

	Lung Disease	Not Lung Disease	Marginal (smoke status)
Smoker	0.0465	0.2635	0.31
Nonsmoker	0.1035	0.5865	0.69
Marginal (disease status)	0.15	0.85	1.00

 How did I come up with the red probabilities? (2 way street)

• Check for yourself that all three equations for independence are valid here.

Review: Joint, marginal and Conditional Probabilities

- P(An B) Joint probability of A and B (of the intersection of A and B)
- P(A|B) Conditional probability of A given B
 "the probability that A occurs given that B
 has occurred."
- P(A) (Marginal, or unconditional) probability of A

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \text{, provided } P(B) \neq 0$$

$$P(A \cap B) = P(B \cap A)$$
$$A \cap B = B \cap A$$

$$P(B \mid A) = \frac{P(B \cap A)}{P(A)} \text{, provided } P(A) \neq 0$$

 $P(A \cap B) = P(A)P(B \mid A)$

"Hot-hand theory" in basketball

 How can we verify or disprove the hot hand theory?

 Obtain a table of many two consecutive free throws and construct a 2x2 table.
 Verify one of the three equations.

- May be it only apply to 3-point shoots?
- How do you define consecutive? Within 2 min?

Disjoint events

Independent events

Chap. 6 Display and describe quantitative data

Center and spread

Average (mean) and median

 Range, interquartile range and standard deviation

examples

Lexington Median family income: \$59,193

Lexington median home price \$155,500

• Median age 33.9

• For symmetric variables, mean value.

Attendance Survey Question

- On a 4"x6" index card
 - Please write down your name and section number
 - -Today's Question:

- Two most common measurements of central tendency of data are
- –Mean and M_