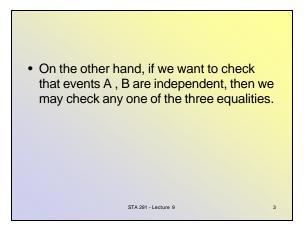


STA 291 - Lecture 9

STA 291 - Lecture 9


1

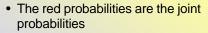
2

• If we know events A and B are independent, then all 3 hold

 $P(A \cap B) = P(A)P(B).$

- P(A|B) = P(A)
- P(B|A) = P(B)


How to use independence?


- We might give you an RxC probability table, and ask you to check if events A, B are independent. [you need to verify one of the three identities]
- We might tell you that A, B are independent events, and ask you to compute the probability of a related event. [in the computation, you may use any of the three identities]

STA 291 - Lecture 9

4

	Lung Disease	Not Lung Disease	Marginal (smoke status)
Smoker	.12	.19	.31
Nonsmoker	.03	.66	.69
Marginal (disease status)	.15	.85	1.00

The green ones are the two marginal probabilities.

Is smoking independent of lung disease?

Check one of the three equations
P(smoker) = 0.31
P(lung disease) = 0.15
joint probability P("smoker and lung disease") = 0.12

Since $0.12 \neq 0.31 \times 0.15 = 0.0465$ Therefore the two events are not independent

STA 291 - Lecture 9

• We may also check P(lung disease | smoker) = 0.12 / 0.31 =0.387

This is different from P(lung disease) = 0.15 (in fact this conditional probability increased a lot compared to unconditional)

Therefore "smoker", "lung disease" are *not* independent

STA 291 - Lecture 9

8

9

Example II

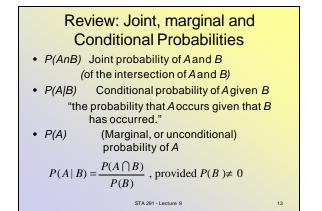
 Given that events A, B are independent, P(A) = 0.3, P(B) = 0.6.
Find P(A or B) = ?

STA 291 - Lecture 9

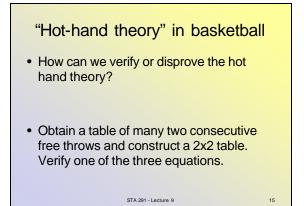
 $P(A \cup B) = ?$

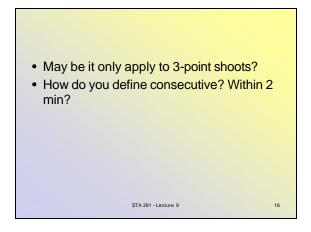
• = 0.72

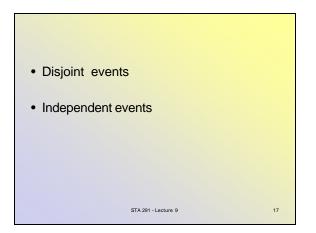
Example of independent


- If the table look like the next one, then the two were independent.
- There, the proportion of disease/nondisease are the same across smokers and nonsmokers.

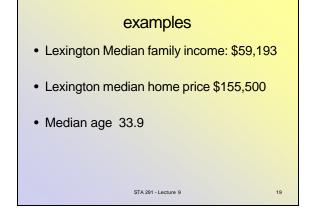
STA 291 - Lecture 9

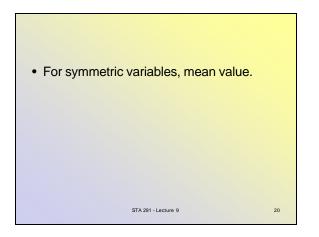

Example: Smoking and Lung Disease II independent case					
	Lung Disease	Not Lung Disease	Marginal (smoke status)		
Smoker	0.0465	0.2635	0.31		
Nonsmoker	0.1035	0.5865	0.69		
Marginal (disease status)	0.15	0.85	1.00		
STA 291 - Lecture 9					

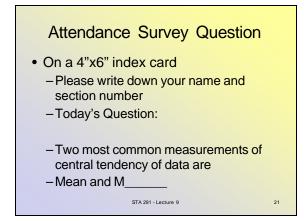

• How did I come up with the red probabilities? (2 way street)


• Check for yourself that all three equations for independence are valid here.

 $P(A \cap B) = P(B \cap A)$ $A \cap B = B \cap A$ $P(B|A) = \frac{P(B \cap A)}{P(A)}, \text{ provided } P(A) \neq 0$ $P(A \cap B) = P(A) P(B|A)$ STA 291 - Lecture 9






Chap. 6 Display and describe quantitative data

- Center and spread
- Average (mean) and median
- Range, interquartile range and standard deviation

STA 291 - Lecture 9

