Homework 1

STA321 Spring 2009

Due Jan. 29

- 1. Let Y be a binomial (n, p) random variable with parameter p (n is known). Let $\hat{p} = Y/n$ Show that $(\hat{p})^2$ is NOT an unbiased estimator of p^2 .
- 2. Let X_1, \ldots, X_n be iid ~ Bernoulli(p). Define $\hat{p} = (1/n) \sum X_i$.

a) Compute the MSE for estimating p with \hat{p} . Show \hat{p} is a consistent estimator of p. (we did this in class, the MSE is p(1-p)/n)

b) Let $\tilde{p} = (0.5 + \sum X_i)/(n+1)$. Compute the MSE of \tilde{p} and show \tilde{p} is also consistent.

c) When n = 100 and p = 0.5, which estimator $(\hat{p} \text{ or } \tilde{p})$ is the better estimator in terms of MSE? When p = 0.1 and n = 100, which is the better estimator?

d) When n = 100, and p = 0.01, which estimator is the better estimator in terms of MSE?

3. Let X_1, \dots, X_n be iid $\sim N(\mu, \sigma^2)$ where both μ and σ^2 are unknown, $-\infty < \mu < \infty, \ 0 < \sigma^2 < \infty$. (Please note, here the variance σ^2 is the parameter not the standard deviation σ)

a) compute the MSE of estimator s^2 as an estimator of σ^2 . (s^2 is the so called sample variance).

b) Let us try a new estimator of σ^2 : $\hat{\sigma}^2 = Cs^2$, for some positive constant C.

Find the best constant C in the sense that minimizes the MSE.

1