Homework 3

STA321

Due Feb. 26

The problems are continuation of the Homework # 2. So I left the questions of Homework 2 here as a reference. You only need to do the new questions.

1. Given *n* independent observations: X_1, X_2, \dots, X_n with a density function given by

$$f(x) = x^3 e^{-x/\theta} \frac{1}{6\theta^4}$$
 for $x > 0$.

where $0 < \theta$ is the unknown parameter. Find the MLE of θ based on the *n* observations.

do not forget to check the second derivative to make sure it is a max

HW 3: Find the Fisher information for the above setting:

(a) the expected Fisher information.

(b) if the observations are $X_1 = 3, X_2 = 5, X_3 = 1.3, X_4 = 5.1, X_5 = 6.2, X_7 = 3.3$ compute the observed Fisher information.

2. The derivative do not exist, so we have trouble define Fisher information here. No more work for this question.

Given n independent observations $X_1, X_2, \dots, X_n \sim Unif(0, \theta)$. where $0 < \theta < \infty$ is the unknown parameter. Find the MLE of θ .

[hint: derivative do not work here.]

3. Suppose Y_1, Y_2, \dots, Y_n are independent with a Poisson distribution with unknown parameter λ .

Find MLE of λ .

HW 3. (a) Find the expected Fisher information here.

(b). If $X_1 = 2, X_2 = 4, X_3 = 1, X_4 = 0, X_5 = 2$, find the observed Fisher information here.