
Example of MLE Computations, using R

First of all, do you really need R to compute the MLE? Please note that
MLE in many cases have explicit formula. Second of all, for some common
distributions even though there are no explicit formula, there are standard
(existing) routines that can compute MLE. Example of this catergory include
Weibull distribution with both scale and shape parameters, logistic regres-
sion, etc. If you still cannot find anything usable then the following notes
may be useful.

We start with a simple example so that we can cross check the result.
Suppose the observations X1, X2, ..., Xn are from N(µ, σ2) distribution (2
parameters: µ and σ2).

The log likelihood function is

∑
−(Xi − µ)2

2σ2
− 1/2 log 2π − 1/2 log σ2 + log dXi

(actually we do not have to keep the terms −1/2 log 2π and log dXi since
they are constants.

In R software we first store the data in a vector called xvec

xvec <- c(2,5,3,7,-3,-2,0) # or some other numbers

then define a function (which is negative of the log lik)

fn <- function(theta) {

sum ( 0.5*(xvec - theta[1])^2/theta[2] + 0.5* log(theta[2]) )

}

where there are two parameters: theta[1] and theta[2]. They are compo-
nents of a vector theta. then we try to find the max (actually the min of
negative log lik)

nlm(fn, theta <- c(0,1), hessian=TRUE)

or

optim(theta <- c(0,1), fn, hessian=TRUE)

1



You may need to try several starting values (here we used c(0,1)) for
the theta. ( i.e. theta[1]=0, theta[2]=1. )

Actual R output session:

> xvec <- c(2,5,3,7,-3,-2,0) # you may try other values

> fn # I have pre-defined fn

function(theta) {

sum( 0.5*(xvec-theta[1])^2/theta[2] + 0.5* log(theta[2]) )

}

> nlm(fn, theta <- c(0,2), hessian=TRUE) # minimization

$minimum

[1] 12.00132

$estimate

[1] 1.714284 11.346933

$gradient

[1] -3.709628e-07 -5.166134e-09

$hessian

[,1] [,2]

[1,] 6.169069e-01 -4.566031e-06

[2,] -4.566031e-06 2.717301e-02

$code

[1] 1

$iterations

[1] 12

> mean(xvec)

[1] 1.714286 # this checks out with estimate[1]

> sum( (xvec -mean(xvec))^2 )/7

[1] 11.34694 # this also checks out w/ estimate[2]

> output1 <- nlm(fn, theta <- c(2,10), hessian=TRUE)

> solve(output1$hessian) # to compute the inverse of hessian

# which is the approx. var-cor matrix
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[,1] [,2]

[1,] 1.6209919201 3.028906e-04

[2,] 0.0003028906 3.680137e+01

> sqrt( diag(solve(output1$hessian)) )

[1] 1.273182 6.066413

> 11.34694/7

[1] 1.620991

> sqrt(11.34694/7)

[1] 1.273182 # st. dev. of mean checks out

> optim( theta <- c(2,9), fn, hessian=TRUE) # minimization, diff R function

$par

[1] 1.713956 11.347966

$value

[1] 12.00132

$counts

function gradient

45 NA

$convergence

[1] 0

$message

NULL

$hessian

[,1] [,2]

[1,] 6.168506e-01 1.793543e-05

[2,] 1.793543e-05 2.717398e-02

Comment: We know long ago the variance of x̄ can be estimated by s2/n.
(or replace s2 by the MLE of σ2) (may be even this is news to you? then you
need to review some basic stat).

But how many of you know (or remember) the variance/standard devia-
tion of the MLE of σ2 (or s2)? (by above calculation we know its standard
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deviation is approx. equal to 6.066413)
How about the covariance between x̄ and v? here it is approx. 0.0003028

(very small). Theory say they are independent, so the true covariance should
equal to 0.

Example of inverting the (Wilks) likelihood ra-

tio test to get confidence interval

Suppose independent observations X1, X2, ..., Xn are from N(µ, σ2) distribu-
tion (one parameter: σ). µ assumed known, for example µ = 2.

The log likelihood function is

∑
−(Xi − µ)2

2σ2
− 1/2 log 2π − 1/2 log σ2 + log dXi

We know the log likelihood function is maximized when

σ =

√∑
(xi − µ)2

n

This is the MLE of σ.
The Wilks statistics is

−2 log
maxH0 lik

max lik
= 2[log max Lik − log max

H0

Lik]

In R software we first store the data in a vector called xvec

xvec <- c(2,5,3,7,-3,-2,0) # or some other numbers

then define a function (which is negative of log lik) (and omit some con-
stants)

fn <- function(theta) {

sum ( 0.5*(xvec - theta[1])^2/theta[2] + 0.5* log(theta[2]) )

}

In R we can compute the Wilks statistics for testing H0 : σ = 1.5 vs
Ha : σ 6= 1.5 as follows:

assume we know µ = 2 then the MLE of σ is
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mleSigma <- sqrt( sum( (xvec - 2)^2 ) /length(xvec))

The Wilks statistics is

WilksStat <- 2*( fn(c(2,1.5^2)) - fn(c(2,mleSigma^2)) )

The actual R session:

> xvec <- c(2,5,3,7,-3,-2,0)

> fn

function(theta) {

sum ( 0.5*(xvec-theta[1])^2/theta[2] + 0.5* log(theta[2]) )

}

> mleSigma <- sqrt((sum((xvec - 2)^2))/length(xvec))

> mleSigma

[1] 3.380617

> 2*( fn(c(2,1.5^2)) - fn(c(2,mleSigma^2)) )

[1] 17.17925

This is much larger then 3.84 ( = 5% significance of a chi-square distri-
bution), so we should reject the hypothesis of σ = 1.5.

After some trial and error we find

> 2*( fn(c(2,2.1635^2)) - fn(c(2,mleSigma^2)) )

[1] 3.842709

> 2*( fn(c(2,6.37^2)) - fn(c(2,mleSigma^2)) )

[1] 3.841142

So the 95% confidence interval for σ is (approximately)
[2.1635, 6.37]
We also see that the 95% confidence Interval for σ2 is

[2.16352, 6.372]

sort of invariance property (for the confidence interval).
We point out that the confidence interval from the Wald construction do

not have invariance property.
The Wald 95% confidence interval for sigma is (using formula we derived

in the midterm exam)
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3.380617 +- 1.96*3.380617/sqrt(2*length(xvec))

= [1.609742, 5.151492]

The Wald 95% confidence interval for σ2 is (homework)

(3.380617)^2 +- 1.96* ...
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Define a function (the log lik of the multinomial distribution)

> loglik <- function(x, p) { sum( x * log(p) ) }

For the vector of observation x (integers) and probability proportion p
(add up to one)

We know the MLE of the p is just x/N where N is the total number of
trials = sumxi.

Therefore the −2[log lik(H0)− log lik(H0 + Ha)] is

> -2*(\loglik(c(3,5,8), c(0.2,0.3,0.5))-loglik(c(3,5,8),c(3/16,5/16,8/16)))

[1] 0.02098882

>

This is not significant (not larger then 5.99) The cut off values are obtained
as follows:

> qchisq(0.95, df=1)

[1] 3.841459

> qchisq(0.95, df=2)

[1] 5.991465

> -2*(loglik(c(3,5,8),c(0.1,0.8,0.1))-lik(c(3,5,8),c(3/16,5/16,8/16)))

[1] 20.12259

This is significant, since it is larger then 5.99.
Now use Pearson’s chi square:

> chisq.test(x=c(3,5,8), p= c(0.2,0.3,0.5))

Chi-squared test for given probabilities

data: c(3, 5, 8)

X-squared = 0.0208, df = 2, p-value = 0.9896

Warning message:

Chi-squared approximation may be incorrect in: chisq.test(x = c(3, 5, 8), p = c(

0.2, 0.3, 0.5))
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> chisq.test(x=c( 3,5,8), p= c(0.1,0.8,0.1))

Chi-squared test for given probabilities

data: c(3, 5, 8)

X-squared = 31.5781, df = 2, p-value = 1.390e-07

Warning message:

Chi-squared approximation may be incorrect in: chisq.test(x = c(3, 5, 8), p = c(

0.1, 0.8, 0.1))

1 t-test and approximate Wilks test

Use the same function we defined before but now we always plug-in the MLE
for the (nuisance parameter) σ2. As for the mean µ, we plug the MLE for
one and plug the value specified in H0 in the other (numerator).

> xvec <- c(2,5,3,7,-3,-2,0)

> t.test(xvec, mu=1.2)

One Sample t-test

data: xvec

t = 0.374, df = 6, p-value = 0.7213

alternative hypothesis: true mean is not equal to 1.2

95 percent confidence interval:

-1.650691 5.079262

sample estimates:

mean of x

1.714286

Now use Wilks likelihood ratio:

> mleSigma <- sqrt((sum((xvec - mean(xvec) )^2))/length(xvec))

> mleSigma2 <- sqrt((sum((xvec - 1.2)^2))/length(xvec))

> 2*( fn(c(1.2,mleSigma2^2)) - fn(c(mean(xvec),mleSigma^2)) )

[1] 0.1612929
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> pchisq(0.1612929, df=1)

[1] 0.3120310

P-value is 0.312031
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