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1 Introduction

Our general setup is that we have a random sample Y = (Y1, . . . , Yn) from a
distribution f(y|θ), with θ unknown.

Our goal is to use the information in the sample to estimate θ. For
example, suppose we are trying to determine the average height of all male
UK undergraduates (call this θ). We observe 100 male undergraduates and
find their average height ȳ to be 69.74 inches. One possible question to ask is
whether it is likely that θ is between 69 and 70 inches. This question might
be interpreted as whether there is a high probability that θ is between 69 and
70. In other words we want to determine the probability, given our observed
data, that θ is between 69 and 70. Formally, we want to determine

Pr(69 < θ < 70|Y = y)

Using Bayes Theorem

Pr(69 < θ < 70|Y = y) =
Pr(Y = y|69 < θ < 70)Pr(69 < θ < 70)

Pr(Y = y)
(1)

Notice this expression contains the quantity Pr(69 < θ < 70). That is
the probability that θ is between 69 and 70 without conditioning on the data.
To make probability statements about a parameter after observing
data, you have to make probability statements about a parameter
before observing data. That statement motivates a split in statistical
methods. In Bayesian inference, the prior probabilities are specified and then
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Bayes theorem is used to make probability statements about the parameter as
in equation (1). In frequentist inference such prior probabilities are considered
nonsensical. The parameter θ is considered an unknown constant, not a
random variable. Since it is not random, making probability statements
doesn’t make sense. A counterargument to this is that even if it is a constant,
since it is unknown we may view it as a random variable. It might be one
value, it might be another, it might be a third. This uncertainty may be
considered randomness. Such arguments can and have continued for many
years and are very interesting.

HOWEVER, if you are just interested in determining θ, Bayesian and
frequentist methods both offer promising paths toward a solution. Often
the two methods generate extremely similar answers anyway, making any
argument about which one is better nearly meaningless from the standpoint
of whether the method arrives at the correct value of θ. Specifically, often
the MSEs of the two methods are identical or nearly identical. This is the
viewpoint I am going to follow in this course. There are certain problems
where the frequentist solution (usually Maximum Likelihood Estimation) is
easier to follow, other problems where the Bayesian solution is easier to follow.
Thus, a knowledge of both methods is useful.

2 Bayesian Estimation

If we have decided we are willing to specify prior probabilities about θ, some
thought must be given as to what are reasonable values. The first step in
Bayesian estimation is to formulate a prior distribution, π(θ), on θ. This
prior distribution allows us to compute Pr(θ ∈ A) for any set A.

The prior distribution is intended to represent the uncertainty about θ.
Often you have very little information about θ, suggesting this prior should
be very diffuse. For example, if we are trying to guess the average height (in
feet) of male students at UK, we may know enough to realize the most people
are between 5 and 6.5 feet tall, and therefore the mean should be between 5
and 6.5 feet, but we may not want to be more specific than that. We wouldn’t,
for example, want to specify π(θ) = N(5.8, 0.000001). Even though 5.8 feet
may be a good guess, this prior places almost all its mass between 5.799995
and 5.800005 feet, indicating we are almost sure, before seeing any data,
then the mean height is in this range. I’m personally not that sure, so I
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might choose a much more diffuse prior, such as setting π(θ) = Uni(5, 6.5),
indicating that I’m sure the mean height is between 5 and 6.5 feet but every
value in there seems about as likely as any other. Another possible prior is
π(θ) = N(5.8, 0.4). This prior places about 95% of its mass between 5 and
6.6 feet, which is reflective of my uncertainty.

For the purposes of this class, I will specify the prior distribution for
you to use. Fortunately, for many problems, including problems involving
a simple random sample from most common distributions, all reasonably
diffuse priors perform similarly. However, in some problems the choice of
prior is extremely important, and there is a considerable amount of research
on this question.

After a prior has been specified, we compute the posterior distribution
of θ, from which all inferences will be made. Using Bayes Theorem, the
conditional density of θ is

π(θ|y1, . . . , yn) =
f(y1, . . . , yn|θ)π(θ)

f(y1, . . . , yn)
=

[
∏

i f(yi|θ)] π(θ)∫
Ω [

∏
i f(yi|θ)] π(θ)dθ

(2)

where Ω is the entire parameter space. Often I will refer to the Likelihood
function, which is defined as

L(y1, . . . , yn|θ) =
∏
i

f(yi|θ)

Thus, equation (2) may also be written

π(θ|y1, . . . , yn) =
L(y1, . . . , yn|θ)π(θ)∫

Ω L(y1, . . . , yn|θ)π(θ)dθ
(3)

The posterior π(θ|Y1, . . . , Yn) is a distribution over θ and has all the usual
properties of a distribution. In particular

1. The posterior distribution integrates to 1.∫
π(θ|y)dθ = 1

2. We may compute the posterior probability that θ is in a set A by

P (θ ∈ A|y) =
∫

A
π(θ|y)dθ
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3. The posterior distribution has a mean and variance, just like any other
distribution. If we have to make a guess as to the exact value of θ, one
commonly used guess is the posterior mean

Eπ[θ|y] =
∫

θπ(θ|y)dθ

Example 1

Suppose that Y1, . . . , Yn ∼ Exp(θ) (with density θ exp{−θy} on the interval
(0,∞)). We observe y1 = 3, y2 = 6, and y3 = 10 and the prior on θ is
π(θ) = 3θ2/19 on the interval [2, 3]. To use equation (3) we need to compute
the likelihood

L(y1, . . . , yn|θ) =
∏
i

θe−θy = θne−θ
∑

i
yi

Placing this and π(θ) in equation (3), the posterior density is

π(θ|y1, . . . , yn) =
θne−θ

∑
i
yi(3θ2/19)∫

Ω θne−θ
∑

i
yi(3θ2/19)dθ

over the range [2, 3] (the same range as the prior. Outside this interval the
prior density is 0 and therefore the posterior density is 0 as well). Performing
some algebra, this simplifies to

π(θ|y1, . . . , yn) =
θn+2e−θ

∑
i
yi∫ 3

2 θn+2e−θ
∑

i
yidθ

Now we must determine the value of the denominator. Often (see the
next section) this calculation is easy. Here it is not. There is no analytical
formula for the denominator, even in terms of Gamma functions (the integral
is from 2 to 3, not 0 to ∞). However, we do know n = 3 and

∑
i yi = 19, so

the integral is ∫ 3

2
θ5e−19θdθ

This can be done using numerical integration techniques such as Simpson’s
rule or the trapezoidal rule. Doing this on my computer, I found the integral
to be 6.06194e− 17, indicating the entire posterior distribution is
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π(θ|y) =
θ5e−19θ

6.06194e− 017

over the range [2, 3]. To compute the posterior mean, we use

∫
θπ(θ|y)dθ =

∫ 3

2
θ

θ5e−19θ

6.06194e− 017
dθ

I computed this quantity by numerical integration as well, finding the answer
to be 2.0601.

2.1 Avoiding Integration

Often the most difficult (tedious, annoying, take your pick) part of Bayesian
inference is computing the integral in the denominator of the posterior dis-
tribution. Sometimes numerical techniques are even required as in the pre-
vious example. However, often the integral can be completely ignored.
WOOHOO! The posterior distribution is

π(θ|y1, . . . , yn) =
L(y1, . . . , yn|θ)π(θ)∫

Ω L(y1, . . . , yn|θ)π(θ)dθ

Let’s just name

C =
1∫

Ω L(y1, . . . , yn|θ)π(θ)dθ

for the moment (we are going to use C as a catchall name for any term not
involving θ). Thus

π(θ|y1, . . . , yn) = (C)L(y1, . . . , yn|θ)π(θ)

Often, we can compute the posterior distribution using the following steps

1. Simplify L(y|θ)π(θ) as far as possible. I will usually be specifying
“nice” priors for you that allow the likelihood and prior to combine.

2. Pull all terms not involving θ out into C, the normalizing constant.
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3. The remaining terms form the kernel of the distribution for θ. You
must now try to recognize what distribution the kernel represents.

Example
Let Y1, . . . , Yn ∼ Geometric(p) (with the parameterization where the

possible values are 0, 1, 2, and so on) and let p have a Beta(2,3) prior,
so the prior density is

Γ(5)

Γ(2)Γ(3)
p1(1− p)2 = 12p(1− p)2

The likelihood is ∏
i

p(1− p)yi = pn(1− p)
∑

i
yi

The product of the likelihood and prior (the numerator of the posterior dis-
tribution) is

pn(1− p)
∑

yi12p(1− p)2 = 12pn+1(1− p)
∑

yi+2

Rewriting the normalizing constant in the denominator as C, we have the
posterior distribution of p is

π(p|y1, . . . , yn) = (C)12pn+1(1− p)
∑

yi+2

Notice that the 12 does not depend on p, it’s just a number, so we may pull
it into C (remember C is just a unknown constant), leaving the kernel

pn+1(1− p)
∑

yi+2

Only one distribution has this kernel. Looking through the distributions, we
find a Beta distribution has a kernel of the form

pα−1(1− p)β−1

Matching up parameter values, the posterior distribution is a Beta(n+2, 3+∑
yi) distribution. The Bayes estimate is the posterior mean, which for a

Beta(n + 2, 3 +
∑

yi) is (n + 2)/(
∑

yi + n + 5).
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Suppose we wished to use a general Beta(α, β) prior. We would like a
formula for the posterior in terms of α and β. We proceed as before, finding
the prior density to be

Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1

The likelihood is unchanged, so the product of the prior and likelihood sim-
plifies is

pn(1− p)
∑

yi
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1 =

Γ(α + β)

Γ(α)Γ(β)
pn+α−1(1− p)

∑
yi+β−1

The prior parameters α and β are treated as fixed constants (eventually we
will give them numerical values, we are just deriving a general formula for
the moment). Thus the Gamma functions in front may be considered part
of the normalizing constant C, leaving the kernel

pn+α−1(1− p)
∑

yi+β−1

Using the same reasoning as before, this is the kernel of a Beta(n+α,
∑

yi+β)
distribution, with posterior mean

n + α∑
yi + n + α + β

.
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