Homework 1, Sta 531 Fall 2008

Due 9/2

1. Find the probability of at least one 6 in 4 rolls of a fair dice. Find the probability of at least a pair of 6 in 24 rolls of two fair dices.
2. Problem 1.2 (b), (d)
3. Problem 1.9 (b)
4. Given a sequence of events, A_{i}, show that

$$
\bigcap_{k=3}^{\infty} \bigcup_{i>k} A_{i}=\left\{\omega \mid \omega \in A_{i} \text { for infinite many index } i\right\}
$$

5. For a given sample space S and one proper, non-empty subset A. Claim: the smallest σ algebra that include A is given by

$$
\mathcal{B}=\left\{\emptyset, A, A^{c}, S\right\} .
$$

Prove this is an σ algebra.
6. For a given sample space S and two proper, non-empty subsets A and B. Assume $A \neq$ $B, A^{c} \neq B$. Explicitly give the smallest σ-algebra that include A and B. (list all the subsets.)

Hidden in the proof of the Theorem 1.2.11 (p. 12) is the following Proposition:
Given any sequence of increasing measurable sets B_{1}, B_{2}, \cdots, we have

$$
P\left(\bigcup_{i=1}^{\infty} B_{i}\right)=\lim _{n \rightarrow \infty} P\left(B_{n}\right)=\lim _{n \rightarrow \infty} P\left(\bigcup_{i=1}^{n} B_{i}\right) .
$$

If we denote $\bigcup_{i=1}^{\infty} B_{i}$ by $\lim _{n \rightarrow \infty} B_{n}$ then the above is just

$$
P\left(\lim _{n \rightarrow \infty} B_{n}\right)=\lim _{n \rightarrow \infty} P\left(B_{n}\right) .
$$

