1. (30) Suppose random variables (X, Y) have a joint probability density function given by

$$
f(x, y)=c e^{-(2 x+y)} ; \quad \text { for } \quad y \geq x \geq 0
$$

(a) find the constant c that make f a density.
(b) find the two marginal p.d.f.s.
(c) find the joint p.d.f. of (U, V) with

$$
U=X+Y, \quad V=Y-X
$$

(d) find the marginal distribution or p.d.f. of $V=Y-X$.
(e) find the conditional density of V given U.
2. (25) Let X be a Poisson(λ) random variable. Show that, after proper standardization, as $\lambda \rightarrow \infty$ we have X goes in distribution to a normal random variable.
3. (25) State and proof the Chebychev inequality.
4. (8) If $X \sim N(2,1)$ and $Y \sim N\left(0, \sigma^{2}=4\right)$ and they are independent. Please compute $\operatorname{Var}(X Y)=$?
5. (12) Suppose $X_{1}, X_{2}, \cdots, X_{n}, \cdots$ is a sequence of exponential $(\lambda=3)$ random variables.

Show that

$$
\frac{X_{n}}{\sqrt{n}} \longrightarrow 0
$$

almost surely as $n \rightarrow \infty$.
solution: For any $\epsilon>0$, we compute $P\left(\left|X_{n} / \sqrt{n}\right|>\epsilon\right)=P\left(X_{n}>\epsilon \sqrt{n}\right)=e^{-3 \epsilon \sqrt{n}}$.
Since $\sum_{n=1}^{\infty} e^{-3 \epsilon \sqrt{n}}<\infty$ for any $\epsilon>0$, we have $P\left(A_{n}\right.$ i.o. $)=0$ where $A_{n}=\left\{\left|X_{n} / \sqrt{n}\right|>\epsilon\right\}$. This is the almost sure convergence we want.

One last question to think about: Show that

$$
\frac{\max _{1 \leq i \leq n}\left\{X_{i}\right\}}{\sqrt{n}} \longrightarrow 0
$$

almost surely as $n \rightarrow \infty$.

