
Note 1, Sta624

1. Suppose we have a MC with finite states, some of them transient, some of them
recurrent (or absorbing).

2. Without loss of generality, assume the transient states are in the front (upper left
corner of the transition matrix), the recurrent states are in the back.

3 The transition probability matrix then will have a “block-wise upper triangle”
shape. ( once the MC goes to the recurrent states, it will not come back to the transient
block).

4. Denote the upper-left block of the transition probability matrix, corresponding to
the transient states, as Pt. (notice this is only part of a transition probability matrix, so
the row sum of Pt may not be 1. In fact at least one row do not sum to 1, for otherwise
this part will be recurrent)

5. Suppose the initial state of the MC is in some transient state, with probability
π0. (π0 may be a distribution. Its length same as the number of transient states)

6. Then the expected number of visits to a transient state j (before this MC is
absorbed to recurrent states) starting from the initial distribution π0, is the jth element
of the following vector

π0 + π0Pt + π0P
2
t + · · · = π0[I + Pt + P 2

t + P 3
t + · · · ]

note: If there is difficult seeing this: write the number of visits to j as
∑

i ηij, and
then taking the expectation, inside the summation, and then the expectation of ηij is
the probability.

7. Use matrix result to get (we can check the convergence since P n
t → 0 as n→∞).

I + Pt + P 2
t + P 3

t + · · · = (I − Pt)
−1

8. Finally, the expectation we want is the jth element of

π0(I − Pt)
−1

9. The expectation above is usually denoted by sj or sij when the π0 is all zero but
a 1 at ith place.
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• Chapman-Kolmogorov equations.

• Pij: the probability of going from state i to state j (in one step). Elements of
Transition probability matrix.

• πi: stationary distribution; Limiting distribution. πP = π .

• fi or fij: start at state i, probability of ever going into state j. For recurrent state
j, fj = fjj = 1. For transient state j, fjj < 1.

• sj or sij: start at state i, the expected number of visits to state j (in the whole life
of the MC). For transient state j, sj <∞ and sii = 1/(1− fii).

• mi = mii: expected number of steps before MC returns to i, starting in state i.
πi = 1/mi for recurrent state i.

• One way to check if a state is recurrent/transient: if
∑

n P
n
ii < ∞ then fi < 1. If∑

n P
n
ii =∞ then fi = 1.
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Brownian Motion etc.

Suppose X(t) is a (standard) Brownian Motion process.
Define Y (t) = σX(t) + µt, (a BM with drift µt and volitility σ). It is not hard to

verify that Y (t) also have independent increment property.

Easy to verify, M1(t) = Y (t) − µt = σX(t) is a martingale, with mean zero. Just
check (for 0 < s < t; that E[M1(t)|M1(u); 0 ≤ u ≤ s] = M1(s)).

For any stopping time T , we have E[M1(T )] = E[M1(0)] = 0.

For 0 < s < t, we compute

E[e−2µ
σ
Y (t)|e−2µ

σ
Y (u); 0 ≤ u ≤ s] = e−2µ

σ
Y (s)

in other words, the process
M2(t) = e−2µ

σ
Y (t)

is also a Martingale process, which has mean = E[M2(0)] = 1 always.

Define a first hitting time of boundary AB as

Tab = min{t|Y (t) = A or −B}

Apply the Optional Sampling Theorem (or Optional Stopping Theorem), to either
the martingale M1(t) or M2(t) and hitting time Tab above. We have

0 = E[Y (Tab)]− µETab or pA− (1− p)B = µETab

and
1 = EM2(Tab) = p(e−2µ

σ
A) + (1− p)(e2

µ
σ
B)

where p is the probability that Y (t) hit A before hit −B. Also p = P (Y (Tab = A).
Solving the above two equations, you get p and E(Tab).

p =
1− e2µ

σ
B

e−2µ
σ
A − e2µ

σ
B

and E(Tab) =
1

µ
[pA− (1− p)B]

This is the result for Y (t), a BM with a drift and volatility σ. If you want the
similar result for a BM WITHOUT a drift, simply take the limit as µ→ 0. After some
calculation [using ex = 1 + x+ x2/2 + ...] we have

p =
B

A+B
and E(Tab) =

AB

σ
.
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