
Example of MC for Continuous State Space

Notes 2, Sta624

The MC we discussed so far are “discrete state space”, i.e. the random variable take
values in a discrete space. We shall discuss here briefly MC with continuous state space,
in particular, the random variables take value in the real line R1.

Recall: A Markov Chain is a sequence of random variables X0, X1, X2, . . . taking
values in a space X . The main property of the chain is that the past is conditionally
independent of the future given the present. Here X = R1

• Transition probability matrix needs to be replaced by a transition probability
function/kernel: pij becomes p(x|y);

which is a probability density function for any given y value. Or a conditional density.
Interpretation: p(x|y)dx is the probability of going to x given it is at y now.

Example 1 MC for continuous state space (take values as continuous random vari-
ables). But still discrete time (i.e. a chain).

In the following example p(x|y) is taken to be Uniform (1− y, 1). State space is the
interval (0, 1).

X0 ∼ any number between 0 and 1 (or could be from any distribution on (0,1)
interval)

X1 ∼ Unif (1−X0, 1)
X2 ∼ Unif (1−X1, 1)
......
Xn ∼ Unif (1−Xn−1, 1); ...
This is an MC.
If the distribution of Xn is convergent at all (here it does), the stationary/limiting

distribution (density f(x)) must satisfy the following (integral) equation:

f(x) =
∫
f(y)p(x|y)dy for any x (1)

We may check that the probability density function f(x) = 2xI[0 < x < 1] solves
the above equation. [with p(x|y) = U(1− y, 1)].

Therefore Xn, when n large, will have a density approximately equal to f(x) = 2x
for 0 < x < 1.

Remark: Compare (1) to the equation for a discrete limiting distribution πj = limP n
ij:

πj =
∑
i

πiPij for any j

we see that (1) is just the continuous version of the above equation.
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Detail verifications: Since

p(x|y) =
I[1−y<x<1]

y

We compute, using f(y) = 2y,∫ 1

0
p(x|y)f(y)dy =

∫
I[1−y<x<1]2dy = 2

∫ 1

1−x
dy = 2x .

Notice here we only used the random variables from uniform distributions and end
up with a random variable with density f(x) = 2x.

The idea of MCMC is to use an easy p(x|y) in the iteration but end up with a random
variable with (complicated) f(x) that we desire.

Example 2 Suppose
X0 ∼ any number between 0 and 1
X1 ∼ Unif (0, 1−X0)
X2 ∼ Unif (0, 1−X1)
......
Xn ∼ Unif (0, 1−Xn−1), · · ·
Find the stationary distribution f(x) of this MC. This will also be the approximate

distribution of Xn for large n.
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Usually the checking or solving of the equation (1) is not easy. But the following
Theorem offers a special easier case.

Theorem 1 If a probability density function f(x) and a transition probability kernel
p(x|y) satisfy the so called ‘detailed balance equation’:

f(x)p(y|x) = f(y)p(x|y) (2)

then the equation (1) above is satisfied.

We usually shall check (2) instead of (1). In the example 1, f(x) = 2xI[0 < x < 1]

and p(x|y) =
I[1−y<x<1]

y
, therefore

f(x)p(y|x) = 2xI[0 < x < 1]
I[1− x < y < 1]

x
= 2I[0 < x < 1; 1− x < y < 1],

and

f(y)p(x|y) = 2yI[0 < y < 1]
I[1−y<x<1]

y
= 2I[0 < y < 1, 1− y < x < 1].

Draw two pictures, and you will convince yourself the two right hand side are the
same region.
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Metropollis Type Chains:

At stage n, suppose a MC takes value yn. We generate the ‘candidate’ value Y using
the uniform random walk: Y ∼ Unif [yn − a, yn + a]. Finally we accept the generated
Y value as yn+1 if

f(Y )

f(yn)
> U(0, 1)

(where U(0, 1) denote another independently generated random variable) otherwise the
MC do not move, i.e. yn+1 = yn.

We can show that this transition kernel function, and density function f(·) pair
satisfy the ‘detailed balance equation’.

The transition probability density function is

1

2a
I[yn − a < Y < yn + a]Pr

(
f(Y )

f(yn)
> U

)

since U is from uniform (0,1), therefore we have

=
1

2a
I[|Y − yn| < a] min

{
1,
f(Y )

f(yn)

}

From here you can proof the “detailed balance equation” hold.

Remark: If we want to construct an MC that has limiting distribution f(·) by
Metropollis, we need to be able to compute the ratio

f(Y )

f(yn)
.

This imply we do not need to worry about the constant if f(t) = Cg(t).
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Application in Bayesian Analysis

In statistical problem of Bayesian inference, we are interested in the posterior distri-
bution/density, or the mean of the posterior etc.

posterior density = constant × prior density function × likelihood function.

Example 0: Xi ∼ N(θ, σ2) and the prior on θ is N(µ, τ 2). Here σ2, τ 2, µ are all
known.

Example 1: Using the R package mcmc. Two dim parameter. In the package, we
input the posterior as “log of un-normalized posterior”.

Here prior density is

g(α, λ) = C ×

√
α trigamma(α)− 1

λ

and the likelihood function is a two parameter gamma distribution

∏
i

λα

Γ(α)
xα−1
i exp(−λxi).

> lupost <- function(theta) {

+ stopifnot(is.numeric(theta))

+ stopifnot(is.finite(theta))

+ stopifnot(length(theta) == 2)

+ alpha <- theta[1]

+ lambda <- theta[2]

+ if (alpha <= 0) return(- Inf)

+ if (lambda <= 0) return(- Inf)

+ logl <- sum(dgamma(x, shape = alpha, rate = lambda, log = TRUE))

+ lpri <- (1 / 2) * log(alpha * trigamma(alpha) - 1) - log(lambda)

+ return(logl + lpri)

+ }

The only tricky bit is that we define this function to be −∞ when parameter is off
the allowed space.

> out <- metrop(out, blen = 200, nbatch = 500)

> alpha <- out$batch[ , 1]

> lambda <- out$batch[ , 2]

> t.test(alpha)
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