Example of MC for Continuous State Space

Notes 2, Sta624

The MC we discussed so far are "discrete state space", i.e. the random variable take values in a discrete space. We shall discuss here briefly MC with continuous state space, in particular, the random variables take value in the real line R^{1}.

Recall: A Markov Chain is a sequence of random variables $X_{0}, X_{1}, X_{2}, \ldots$ taking values in a space \mathcal{X}. The main property of the chain is that the past is conditionally independent of the future given the present. Here $\mathcal{X}=R^{1}$

- Transition probability matrix needs to be replaced by a transition probability function/kernel: $p_{i j}$ becomes $p(x \mid y)$;
which is a probability density function for any given y value. Or a conditional density.
Interpretation: $p(x \mid y) d x$ is the probability of going to x given it is at y now.
Example 1 MC for continuous state space (take values as continuous random variables). But still discrete time (i.e. a chain).

In the following example $p(x \mid y)$ is taken to be Uniform $(1-y, 1)$. State space is the interval $(0,1)$.
$X_{0} \sim$ any number between 0 and 1 (or could be from any distribution on $(0,1)$ interval)
$X_{1} \sim \operatorname{Unif}\left(1-X_{0}, 1\right)$
$X_{2} \sim \operatorname{Unif}\left(1-X_{1}, 1\right)$
......
$X_{n} \sim \operatorname{Unif}\left(1-X_{n-1}, 1\right) ;$.
This is an MC.
If the distribution of X_{n} is convergent at all (here it does), the stationary/limiting distribution (density $f(x)$) must satisfy the following (integral) equation:

$$
\begin{equation*}
f(x)=\int f(y) p(x \mid y) d y \quad \text { for any } x \tag{1}
\end{equation*}
$$

We may check that the probability density function $f(x)=2 x I[0<x<1]$ solves the above equation. [with $p(x \mid y)=U(1-y, 1)$].

Therefore X_{n}, when n large, will have a density approximately equal to $f(x)=2 x$ for $0<x<1$.

Remark: Compare (1) to the equation for a discrete limiting distribution $\pi_{j}=\lim P_{i j}^{n}$:

$$
\pi_{j}=\sum_{i} \pi_{i} P_{i j} \quad \text { for any } j
$$

we see that (1) is just the continuous version of the above equation.

Detail verifications: Since

$$
p(x \mid y)=\frac{I_{[1-y<x<1]}}{y}
$$

We compute, using $f(y)=2 y$,

$$
\int_{0}^{1} p(x \mid y) f(y) d y=\int I_{[1-y<x<1]} 2 d y=2 \int_{1-x}^{1} d y=2 x .
$$

Notice here we only used the random variables from uniform distributions and end up with a random variable with density $f(x)=2 x$.

The idea of MCMC is to use an easy $p(x \mid y)$ in the iteration but end up with a random variable with (complicated) $f(x)$ that we desire.

Example 2 Suppose
$X_{0} \sim$ any number between 0 and 1
$X_{1} \sim \operatorname{Unif}\left(0,1-X_{0}\right)$
$X_{2} \sim \operatorname{Unif}\left(0,1-X_{1}\right)$
$X_{n} \sim \operatorname{Unif}\left(0,1-X_{n-1}\right), \cdots$
Find the stationary distribution $f(x)$ of this MC. This will also be the approximate distribution of X_{n} for large n.

Usually the checking or solving of the equation (1) is not easy. But the following Theorem offers a special easier case.

Theorem 1 If a probability density function $f(x)$ and a transition probability kernel $p(x \mid y)$ satisfy the so called 'detailed balance equation':

$$
\begin{equation*}
f(x) p(y \mid x)=f(y) p(x \mid y) \tag{2}
\end{equation*}
$$

then the equation (1) above is satisfied.
We usually shall check (2) instead of (1). In the example 1, $f(x)=2 x I[0<x<1]$ and $p(x \mid y)=\frac{I_{[1-y<x<1]}}{y}$, therefore

$$
f(x) p(y \mid x)=2 x I[0<x<1] \frac{I[1-x<y<1]}{x}=2 I[0<x<1 ; 1-x<y<1],
$$

and

$$
f(y) p(x \mid y)=2 y I[0<y<1] \frac{I_{[1-y<x<1]}}{y}=2 I[0<y<1,1-y<x<1] .
$$

Draw two pictures, and you will convince yourself the two right hand side are the same region.

Metropollis Type Chains:

At stage n, suppose a MC takes value y_{n}. We generate the 'candidate' value Y using the uniform random walk: $Y \sim U n i f\left[y_{n}-a, y_{n}+a\right]$. Finally we accept the generated Y value as y_{n+1} if

$$
\frac{f(Y)}{f\left(y_{n}\right)}>U(0,1)
$$

(where $U(0,1)$ denote another independently generated random variable) otherwise the MC do not move, i.e. $y_{n+1}=y_{n}$.

We can show that this transition kernel function, and density function $f(\cdot)$ pair satisfy the 'detailed balance equation'.

The transition probability density function is

$$
\frac{1}{2 a} I\left[y_{n}-a<Y<y_{n}+a\right] \operatorname{Pr}\left(\frac{f(Y)}{f\left(y_{n}\right)}>U\right)
$$

since U is from uniform $(0,1)$, therefore we have

$$
=\frac{1}{2 a} I\left[\left|Y-y_{n}\right|<a\right] \min \left\{1, \frac{f(Y)}{f\left(y_{n}\right)}\right\}
$$

From here you can proof the "detailed balance equation" hold.
Remark: If we want to construct an MC that has limiting distribution $f(\cdot)$ by Metropollis, we need to be able to compute the ratio

$$
\frac{f(Y)}{f\left(y_{n}\right)}
$$

This imply we do not need to worry about the constant if $f(t)=C g(t)$.

Application in Bayesian Analysis

In statistical problem of Bayesian inference, we are interested in the posterior distribution/density, or the mean of the posterior etc.
posterior density $=$ constant \times prior density function \times likelihood function.
Example 0: $X_{i} \sim N\left(\theta, \sigma^{2}\right)$ and the prior on θ is $N\left(\mu, \tau^{2}\right)$. Here $\sigma^{2}, \tau^{2}, \mu$ are all known.

Example 1: Using the R package mcmc. Two dim parameter. In the package, we input the posterior as "log of un-normalized posterior".

Here prior density is

$$
g(\alpha, \lambda)=C \times \frac{\sqrt{\alpha \operatorname{trigamma}(\alpha)-1}}{\lambda}
$$

and the likelihood function is a two parameter gamma distribution

$$
\prod_{i} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x_{i}^{\alpha-1} \exp \left(-\lambda x_{i}\right)
$$

```
> lupost <- function(theta) {
+ stopifnot(is.numeric(theta))
+ stopifnot(is.finite(theta))
+ stopifnot(length(theta) == 2)
+ alpha <- theta[1]
+ lambda <- theta[2]
+ if (alpha <= 0) return(- Inf)
+ if (lambda <= 0) return(- Inf)
+ logl <- sum(dgamma(x, shape = alpha, rate = lambda, log = TRUE))
+ lpri <- (1 / 2) * log(alpha * trigamma(alpha) - 1) - log(lambda)
+ return(logl + lpri)
+ }
```

The only tricky bit is that we define this function to be $-\infty$ when parameter is off the allowed space.

```
> out <- metrop(out, blen = 200, nbatch = 500)
> alpha <- out$batch[ , 1]
> lambda <- out$batch[ , 2]
> t.test(alpha)
```

