Example of MC for Continuous State Space

Notes 2, Sta624

The MC we discussed so far are “discrete state space”, i.e. the random variable take
values in a discrete space. We shall discuss here briefly MC with continuous state space,
in particular, the random variables take value in the real line R!.

Recall: A Markov Chain is a sequence of random variables Xg, Xy, X5, ... taking
values in a space X. The main property of the chain is that the past is conditionally
independent of the future given the present. Here X = R!

e Transition probability matrix needs to be replaced by a transition probability
function/kernel: p;; becomes p(z|y);

which is a probability density function for any given y value. Or a conditional density.

Interpretation: p(z|y)dzx is the probability of going to = given it is at y now.

Example 1 MC for continuous state space (take values as continuous random vari-
ables). But still discrete time (i.e. a chain).

In the following example p(z|y) is taken to be Uniform (1 — y, 1). State space is the
interval (0, 1).

Xo ~ any number between 0 and 1 (or could be from any distribution on (0,1)
interval)

X1 ~ Unif (]_ - X(), 1)

X, ~ Unif (1 — X3, 1)

X ~ Unif (1 — X,,_1,1); ...

This is an MC.

If the distribution of X, is convergent at all (here it does), the stationary/limiting
distribution (density f(z)) must satisfy the following (integral) equation:

f@) = [ fwplalydy for any o 1)

We may check that the probability density function f(z) = 2zI[0 < x < 1] solves
the above equation. [with p(z|y) = U(1 —y, 1)].

Therefore X,,, when n large, will have a density approximately equal to f(x) = 2x
for 0 < x < 1.

Remark: Compare (1) to the equation for a discrete limiting distribution 7; = lim Pjj:

T = ZmPZ-j for any j

we see that (1) is just the continuous version of the above equation.



Detail verifications: Since

In—y<a
plaly) = S

We compute, using f(y) = 2y,

1 1
/0 p(aly) f(y)dy = /I[l—y<z<1}2dy =2 dy=2c.
Notice here we only used the random variables from uniform distributions and end
up with a random variable with density f(z) = 2x.

The idea of MCMC is to use an easy p(x|y) in the iteration but end up with a random
variable with (complicated) f(x) that we desire.

Example 2 Suppose

Xo ~ any number between 0 and 1

X1 ~ Unif (O, 1-— X())

XQ ~ Unif (0, 1-— Xl)

X, ~ Unif (0,1 — X,,—1), -+~

Find the stationary distribution f(x) of this MC. This will also be the approximate
distribution of X, for large n.



Usually the checking or solving of the equation (1) is not easy. But the following
Theorem offers a special easier case.

Theorem 1 If a probability density function f(z) and a transition probability kernel
p(z|y) satisfy the so called ‘detailed balance equation’:

f(@)pylz) = fy)p(zly) (2)

then the equation (1) above is satisfied.

We usually shall check (2) instead of (1). In the example 1, f(z) = 22/[0 < z < 1]
and p(zly) = w, therefore
I —z<y<1]
T

flz)p(y|z) = 2210 < x < 1] =2[0<z<il—z<y<l],

and
In—y<s
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Draw two pictures, and you will convince yourself the two right hand side are the
same region.



Metropollis Type Chains:

At stage n, suppose a MC takes value y,,. We generate the ‘candidate’ value Y using
the uniform random walk: Y ~ Unifly, — a,y, + a]. Finally we accept the generated
Y value as gy, if

f(Y)
f(yn)

(where U(0, 1) denote another independently generated random variable) otherwise the
MC do not move, i.e. Y11 = Yn.

We can show that this transition kernel function, and density function f(-) pair
satisfy the ‘detailed balance equation’.

The transition probability density function is

> U(0,1)

;a[[yn —a<Y <y, +a|lPr (JJ:((;;)) > U)

since U is from uniform (0,1), therefore we have

1 . f(Y)
= %IHY — Y| < a mln{l, f(yn)}

From here you can proof the “detailed balance equation” hold.

Remark: If we want to construct an MC that has limiting distribution f(-) by
Metropollis, we need to be able to compute the ratio

fY)
f(yn)

This imply we do not need to worry about the constant if f(t) = Cg(t).




Application in Bayesian Analysis

In statistical problem of Bayesian inference, we are interested in the posterior distri-
bution/density, or the mean of the posterior etc.

posterior density = constant x prior density function x likelihood function.

Example 0: X; ~ N(,0%) and the prior on 6 is N(u,7?). Here o2, 7% u are all
known.

Example 1: Using the R package mcmc. Two dim parameter. In the package, we
input the posterior as “log of un-normalized posterior”.

Here prior density is

\/a trigamma(a) — 1
A

gla, \) =C x

and the likelihood function is a two parameter gamma distribution

«

11 F(a)x?’I exp(—Az;).

i

lupost <- function(theta) {

stopifnot (is.numeric(theta))

stopifnot(is.finite(theta))

stopifnot (length(theta) == 2)

alpha <- thetal1]

lambda <- thetal[2]

if (alpha <= 0) return(- Inf)

if (lambda <= 0) return(- Inf)

logl <- sum(dgamma(x, shape = alpha, rate = lambda, log = TRUE))
lpri <- (1 / 2) * log(alpha * trigamma(alpha) - 1) - log(lambda)
return(logl + lpri)

}
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The only tricky bit is that we define this function to be —oo when parameter is off
the allowed space.

out <- metrop(out, blen = 200, nbatch = 500)
alpha <- out$batch[ , 1]

lambda <- out$batch[ , 2]

t.test(alpha)
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