1. From the book by P. Allison, page 38-39. Please verify that the logrank test and Wilcoxon test he defines are in fact equivalent to what we defined in class: (by taking the weight function to be $(R_1R_2)/(R_1+R_2)$ and R_1R_2) in a general class of tests:

$$\int W(s) \left(\frac{dN_1}{R_1} - \frac{dN_2}{R_2} \right)$$

- **2** Case 1: Two independent subjects: the first one has $exp(\lambda_1)$ distribution, been observed from time zero until it got censored at time T_1 . The second subject has $exp(\lambda_2)$ distribution, enter the study at time T_1 and observed to die at T_2 .
- Case 2: One subject following a two-piece exponential distribution with a change of hazard rate at T_1 , this subject enter the study at time zero and is observed to die at T_2 .

Show that the likelihood function for the two cases are identical.

- **3** Continuation of problem 6 in last homework (#3), Formally Test the difference between 3 groups in the colon data set. Use logrank and Wilcoxon tests. Report p-value.
 - 4 Generate two samples of size 60 each. Each with the same positive distribution of your choice.

Randomly censored the samples so that there are about 20% censored observations. Finally use logrank/wilcoxon test to perform the test based on the censored data. Report the p-values.

Repeat the above 100 times and report 200 p-values.