
Examples of Constructing Confidence Interval by Likelihood
Ratio Test

Mai Zhou

Department of Statistics
University of Kentucky
Lexington, KY 40536

SUMMARY

These notes details several examples that help us understand the technique of profiling the

(either regular or empirical) likelihood. The likelihood is then used to produce (Wilks) confidence

intervals. This provides more details to a technique used in the book Empirical Likelihood Methods
in Survival Analysis (Zhou, 2016), and showcase the capability of some R functions inside
packages emplik.

AMS 2000 Subject Classification: Primary 60E15; secondary 60G30.
Key Words and Phrases: Empirical likelihood, Confidence region and interval.

1 Confidence Intervals Based on the Likelihood Ratio Test1

1. Let’s consider the binomial case. Let X be a random variable distributed as a
Binomial(n, p). Then, we know that the maximum likelihood estimator of p will be
p̂ = x

n . And, from our introductory statistics courses, we know that we can calculate
a confidence interval for p by the following formula for a Wald confidence interval:

p̂± z
√
p̂ (1− p̂)

n
(1)

One issue with this type of confidence interval is that it’s possible for it to contain
values outside of the interval (0, 1), which doesn’t make any sense. There are some
known transformations which eliminate (or reduce the likelihood) of this possibil-
ity. So, let’s consider an arbitrary (monotone) transformation g (p) and construct a
confidence interval for it. From the formula for a Wald confidence interval, we have:

g (p̂)± z
√
V ar (g (p̂)) (2)

where we used the fact that the MLE is invariant, so we know ĝ (p) = g (p̂). And, by
the delta method, we have:

V ar (g (p̂)) ≈
[
g′(p)

]2
V ar (p̂) (3)

1These notes were obtained using emplik version 1.0-1

1

This gives us the confidence interval for g(p): g(p) ∈ [L,U]. Which yields the follow-
ing confidence interval for p: p ∈ [g−1(L), g−1(U)] .

So, why do we use transformations and why are they useful?
One reason: If you use a “good” transformation, then you can guarantee that the
confidence interval for p will be between (0, 1).

But, there exist many different “good” transformations. Which one is the best? (kind
of arbitrary, in terms of accurate, speed, etc.).
The selection of the best “good” transformation is somewhat arbitrary. Your decision
could be based on accuracy, speed, or any other criteria that you deem important.
An example of this arbitrariness is the discrepancy between the transformation used
by SAS and that used by R (in their confidence intervals based on the Kaplan-Meier
for survival probability). In SAS, they use log(− log(1− p)), while R uses log(1− p).

2. Hypothesis Testing
Let’s consider testing the following hypotheses:

H0 : p = p0 (4)

H1 : p 6= p0 (5)

Using the likelihood ratio test, we would reject the null when:

−2× log

[
likelihood(x, p0)

likelihood(x, p̂)

]
> C = χ2

1,0.95 (6)

We can simplify the left-hand side (without the -2 and took p for p0) of this inequality
to:

x log(p) + (n− x) log(1− p)− x log(p̂)− (n− x) log(1− p̂) (7)

= x log(
p

p̂
) + (n− x) log(

1− p
1− p̂

) (8)

Now, there are two conditions the we need to take into consideration:
a. p 6=0 and p 6=1
b. p̂ 6=0 and p̂6=1
We can write a function in R which calculates this value for us:

BinLLR = function(n,x,p){

if(x >= n) stop("100 percent success?")

if(p <= 0) stop("P must between 0 and 1")

if(x <= 0) stop("no seccess?")

if(p >= 1) stop("P must < 1")

phat = x/n

2

-2*(x*log(p/phat)+(n-x)*log((1-p)/(1-phat)))

}

ts = BinLLR(n=100,x=30,p=0.5)

1 - pchisq(ts,df=1)

[1] 4.977722e-05

This show the P-value is near zero in testing p=0.5. When we test various values
of success probabilities, those that lead to a P-value larger than 0.05 form a 95%
confidence interval for p. This may be accomplished by the function findUL() from
package emplik. Which gives us a confidence interval of [0.2160426, 0.3940769].

3. myfun <- function(theta, n, x){
temp <- BinLLR(n=n, x=x, p=theta)

list("-2LLR"=temp)

}

library(emplik)

Warning: package ’emplik’ was built under R version 3.2.2

Loading required package: quantreg

Warning: package ’quantreg’ was built under R version 3.2.2

Loading required package: SparseM

Warning: package ’SparseM’ was built under R version 3.2.2

Loading required package: methods

##

Attaching package: ’SparseM’

The following object is masked from ’package:base’:

##

backsolve

findUL(fun=myfun, MLE=0.3, n=100, x=30)

$Low

[1] 0.2160426

##

$Up

[1] 0.3940769

##

$FstepL

[1] 1e-10

##

3

$FstepU

[1] 1e-10

##

$Lvalue

[1] 3.84

##

$Uvalue

[1] 3.84

4. Good Properties of the Likelihood Ratio Test Approach to Confidence Intervals

(a) The LRT method is transformation invariant

i. Monotone Transformations
If you have a confidence interval for p, (lower, upper), and you want a confi-
dence interval for log(p) (or any monotone function), you can find it by taking
the log of the lower and upper bounds for p, (log(lower), log(upper)). This
is much easier than the Wald method which involves calculating derivatives,
using the delta method, etc.

ii. Transformations Which Aren’t Monotone
This property even holds for transformations which aren’t monotone. If you
have a transformation g(p) which isn’t monotone and a confidence interval for
p, (l, u) is available, then you can find your transformed confidence interval
forg(p) by the following steps:

uppernew = max
l<p<u

g(p)

lowernew = min
l<p<u

g(p)

(b) The LRT method is range preserving
This means that the confidence intervals it produces will always be inside of the
parameter space. So, in the binomial case, the confidence intervals produced by
the LRT method will always be between (0, 1).

(c) You do not have to compute/estimate the variance of the estimator (usually the
MLE).

(d) The LRT method doesn’t necessarily give symmetric intervals
The asymmetry of the intervals is more similar to the actual distributions under
consideration. So, in the binomial case when we have a small value of p, we know
that there are more values above p than below it, so we’d expect our interval
to reflect this. The Wald interval, on the other hand, will always be symmetric
which we know is not always true of the distributions under consideration.

5. Possible Drawbacks of the Likelihood Ratio Test Approach to Confidence Intervals

(a) You may not have to use the delta method or take any derivatives, but you still
have to find maximums and roots. These calculations should be easily done using
computers, so this isn’t too much of an issue.

4

2 The Ratio of Two Success Probabilities

Let’s consider the case where we have two samples, each containing a parameter: success
probability. From each sample we will have an ni and an xi, where ni is the total number of
units observed in the ith sample and xi is the total number of successes observed in the ith

sample. We can model this situation by two binomial random variables, X1 and X2, where
X1 ∼ Binomial (n1, p1) and X2 ∼ Binomial (n2, p2), where the MLE for p1 is p̂1 = x1

n1
and

the MLE for p2 is p̂2 = x2
n2

.

Now, let’s suppose that we want to use the likelihood ratio test method of creating a
confidence interval for the ratio of p1

p2
. Since maximum likelihood estimators are invari-

ant, we know that the MLE for p1
p2

will simply be p̂1
p̂2

= x1n2
x2n1

. We also know that since
independent assumptions made the log-likelihood ratio additive, it follows that LLR =
LLR (sample1)+LLR (sample2). And since we want to use the likelihood ratio test method,
we’ll need to consider the following hypotheses:

H0 :
p1
p2

= θ

H1 :
p1
p2
6= θ

Under the likelihood ratio test, our initial parameters of interest are p1 and p2. But this is
equivalent to considering the parameters p1 and θ, since θ = p1

p2
. If we take p1 and θ to be

our parameters of interest, then it follows that p1 can be viewed as our nuisance parameter
since θ is what we’re truly interested in. From our previous coursework, we know that we
can get rid of a nuisance parameter in the log-likelihood ratio by simply “maximizing it
out.” In this case, we’ll have

LLR(θ) = max{
p1,p2:

p1
p2

=θ
} {LLR (sample1) + LLR (sample2)}

And then we can multiply this by −2 to obtain our likelihood ratio test statistic:

−2 [LLR (θ)] = −2

 max{
p1,p2:

p1
p2

=θ
} {LLR (sample1) + LLR (sample2)}

= min{

p1,p2:
p1
p2

=θ
} {−2 · LLR (sample1)− 2 · LLR (sample2)}

So, once we have our likelihood ratio test statistic, we can compare it to 3.84 and determine
whether or not we reject H0. Then, we can create a confidence interval for θ = p1

p2
by finding

the values of θ which give us a likelihood ratio test statistic less than 3.84.
Below is the R code for computing a confidence interval for the ratio of two success prob-
abilities using the likelihood ratio test method. Note that the code is for θ = p2

p1
and not

θ = p1
p2

. But, using the invariance property of the likelihood ratio confidence intervals, we

can simple take the inverse of the confidence limits to get those for θ = p1
p2

.

5

BinoRatio <- function(n1, x1, n2, x2){

if(x1 >= n1) stop("all success(sample 1)?")

if(x2 >= n2) stop("all success(sample 2)?")

MLE <- (x2*n1)/(x1*n2) #### recall we are to find CI for p2/p1, not p1/p2.

EPS <- .Machine$double.eps

Theta <- function(theta, n1=n1, x1=x1, n2=n2, x2=x2)

{
llr <- function(const, n1, x1, n2, x2, theta) {

npllik1 <- -2*(x1*log((const*n1)/x1) +

(n1-x1)*log(((1-const)*n1)/(n1-x1)))

npllik2 <- -2*(x2*log((const*theta*n2)/x2) +

(n2-x2)*log(((1-const*theta)*n2)/(n2-x2)))

return(npllik1 + npllik2)

}
upBD <- min(1-EPS, 1/theta - EPS)

temp <- optimize(f = llr,

lower = EPS,

upper = upBD,

n1 = n1,

x1 = x1,

n2 = n2,

x2 = x2,

theta = theta)

cstar <- temp$minimum

val <- temp$objective

pvalue <- 1 - pchisq(val, df=1)

list(`-2LLR` = val, cstar = cstar, Pval=pvalue)

}

temp <- findUL(step=0.1, fun=Theta, MLE=MLE, n1=n1, x1=x1, n2=n2, x2=x2)

return(temp)

}

BinoRatio(n1=100, x1=30, n2=90, x2=33)

$Low

[1] 0.8149795

##

$Up

[1] 1.844754

6

##

$FstepL

[1] 1e-09

##

$FstepU

[1] 1e-09

##

$Lvalue

[1] 3.84

##

$Uvalue

[1] 3.84

From the output, we read that the 95% confidence interval for the ratio of θ = p2
p1

is
[0.8149795, 1.844754].

Exercise: Similar to the above BinoRatio() function, write an R function BinoDiff(),
that will produce the Wilks confidence interval for the difference of two binomial success
probabilities.

3 Confidence Intervals related to the Kaplan-Meier Estima-
tor

For any quantities, if they can be written as an integral with respect to the Kaplan-Meier
estimator, then we can find its confidence interval. Below are just two examples.

3.1 Survival Probability at a given time

Usually the five-year survival rate and 3-year survival rate are used in breast cancer analysis.
The five-year survival rate can be written as an integration wrt the Kaplan-Meier:

F (5) =

ˆ ∞
0

I[s ≤ 5]dF (s) and F̂ (5) =

ˆ ∞
0

I[s ≤ 5]dF̂ (s)

Notice this is the five year death rate, so when we got the confidence interval we need to
take a 1- F to get the survival rate. Next we test the hypothesis the death rate is 0.3.

library(survival)

Warning: package ’survival’ was built under R version 3.2.5

##

Attaching package: ’survival’

The following object is masked from ’package:quantreg’:

##

untangle.specials

7

library(emplik)

data(pbc)

FiveSurvfun <- function(x) {as.numeric(x <= 5*365.25)}
el.cen.EM2(x=pbc$time, d=(pbc$status==2), fun=FiveSurvfun, mu=0.3)

$loglik

[1] -1033.999

##

$times

[1] 41 41 43 51 71 77 94 110 111 130 131 140 179 186

[15] 191 193 198 207 216 221 223 249 264 264 304 321 326 334

[29] 348 359 388 400 460 466 489 515 549 552 559 597 597 611

[43] 625 662 673 681 694 703 708 727 733 750 762 769 778 785

[57] 786 790 791 797 799 824 850 853 859 890 904 930 935 943

[71] 971 974 980 990 999 1000 1012 1037 1077 1080 1083 1095 1152 1165

[85] 1168 1170 1191 1191 1197 1212 1217 1235 1297 1350 1356 1360 1413 1427

[99] 1434 1444 1462 1478 1487 1492 1518 1536 1576 1616 1657 1682 1690 1690

[113] 1741 1746 1786 1827 1847 1925 2011 2055 2071 2081 2090 2105 2111 2224

[127] 2256 2286 2288 2297 2386 2400 2419 2466 2503 2540 2583 2598 2689 2769

[141] 2796 2812 2847 3086 3090 3170 3222 3244 3282 3358 3395 3428 3445 3561

[155] 3574 3584 3762 3839 3853 4079 4191 4795

##

$prob

[1] 0.002412920 0.002412920 0.002412920 0.002412920 0.002412920

[6] 0.002412920 0.002412920 0.002412920 0.002412920 0.002412920

[11] 0.002412920 0.002412920 0.002412920 0.002412920 0.002412920

[16] 0.002412920 0.002412920 0.002412920 0.002412920 0.002412920

[21] 0.002412920 0.002412920 0.002412920 0.002412920 0.002412920

[26] 0.002412920 0.002412920 0.002412920 0.002412920 0.002412920

[31] 0.002412920 0.002412920 0.002412920 0.002412920 0.002412920

[36] 0.002412920 0.002419313 0.002419313 0.002419313 0.002419313

[41] 0.002419313 0.002419313 0.002425844 0.002425844 0.002425844

[46] 0.002425844 0.002432482 0.002432482 0.002432482 0.002432482

[51] 0.002439231 0.002446036 0.002446036 0.002446036 0.002446036

[56] 0.002446036 0.002446036 0.002452996 0.002452996 0.002452996

[61] 0.002452996 0.002452996 0.002467240 0.002467240 0.002467240

[66] 0.002474487 0.002481799 0.002481799 0.002481799 0.002489220

[71] 0.002496707 0.002496707 0.002504286 0.002511934 0.002519653

[76] 0.002519653 0.002519653 0.002535379 0.002567530 0.002567530

[81] 0.002567530 0.002592423 0.002652624 0.002661483 0.002661483

[86] 0.002661483 0.002670492 0.002670492 0.002670492 0.002670492

[91] 0.002688945 0.002717207 0.002775760 0.002890359 0.002890359

[96] 0.002890359 0.002980882 0.003016449 0.003028542 0.003065560

[101] 0.003103652 0.003103652 0.003116668 0.003116668 0.003129906

[106] 0.003143314 0.003212418 0.003284954 0.003361194 0.003408885

8

[111] 0.003408885 0.003408885 0.003475583 0.003475583 0.003581743

[116] 0.003553299 0.003589931 0.003685408 0.003871749 0.003938504

[121] 0.003938504 0.003938504 0.003938504 0.003961808 0.003985532

[126] 0.004268376 0.004382199 0.004441821 0.004441821 0.004472667

[131] 0.004773071 0.004773071 0.004809507 0.004962190 0.005042877

[136] 0.005258388 0.005647918 0.005647918 0.006047321 0.006372545

[141] 0.006442604 0.006515029 0.006745127 0.007982833 0.007982833

[146] 0.008747527 0.008747527 0.009046707 0.009207121 0.009552609

[151] 0.009739220 0.009937574 0.009937574 0.011693034 0.011693034

[156] 0.012361492 0.013578060 0.014587256 0.015184368 0.023689194

[161] 0.030921914 0.341963933

##

$lam

[1] -5.092003

##

$iters

[1] 25

##

$`-2LLR`

[1] 0.09037645

##

$Pval

[1] 0.7636991

We see that the function el.cen.EM2 is testing the null hypothesis

H0 :

ˆ ∞
0

fun(x)dF (x) = mu

where you specify the function fun and the value mu. Here the P-value of the test is 0.7637.
Next we use the function findUL to find the 95% confidence interval.

myfun9 <- function(theta, x, d){
el.cen.EM2(x, d, fun=function(x) {as.numeric(x <= 5*365.25)}, mu=theta)

}
findUL(step=0.2, fun=myfun9, MLE=0.3, x=pbc$time, d=(pbc$status==2))

$Low

[1] 0.2528338

##

$Up

[1] 0.3444268

##

$FstepL

[1] 2e-09

##

9

$FstepU

[1] 2e-09

##

$Lvalue

[1] 3.839999

##

$Uvalue

[1] 3.839999

We see that the confidence interval for F(5 year) is [0.25283, 0.34442]. Thus the confi-
dence interval for the 5 year survival rate is [1-0.34442, 1-0.25283]=[0.65558, 0.74717]. The
step option in the findUL function is the search step size. When we search a confidence
interval inside [0,1] then this step should be small like 0.1 or 0.2. The MLE entry is the
MLE of the estimator, but do not have to be exact, any value inside the eventual confidence
interval should work.

Exercise: Given two samples of censored survival times, find the difference of two 5-year
survival probabilities.

3.2 Difference of two Survival Probabilities at a given time

Take the pbc data from survival package. The two treatments lead to two samples.

mypbc <- pbc[1:312,]

pbcX1 <- mypbc$time[mypbc$trt==1]

pbcX2 <- mypbc$time[mypbc$trt==2]

pbcD1 <- mypbc$status[mypbc$trt==1]

pbcD2 <- mypbc$status[mypbc$trt==2]

pbcd1 <- as.numeric(pbcD1==2)

pbcd2 <- as.numeric(pbcD2==2)

3.3 Ratio of two Survival Probabilities at a given time

We compute the ratio of 5 year survival ratio confidence interval. Here we take the nuisance
parameter r as the 5-year survival probability of sample two, while theta is the parameter
of interest: the ratio sample 1 surv prob / sample 2 surv prob.

Ratiofun3 <- function(theta, x1, d1, x2, d2){
survRatio <- function(r, x1, d1, x2, d2, theta){
temp1 <- el.cen.EM2(x=x1,d=d1,fun=function(x){as.numeric(x > 5*365.25)},mu=r*theta)
temp2 <- el.cen.EM2(x=x2,d=d2,fun=function(x){as.numeric(x > 5*365.25)},mu=r)
return(temp1$"-2LLR" + temp2$"-2LLR")

}

temp <- optimize(f=survRatio,

lower=0.4,

10

upper=0.9,

x1=x1, d1=d1, x2=x2, d2=d2,

theta=theta)

cstar <- temp$minimum

val <- temp$objective

list("-2LLR"=val, cstar=cstar)

}

findUL(step=0.1, fun=Ratiofun3, MLE=1, x1=pbcX1, d1=pbcd1, x2=pbcX2, d2=pbcd2)

$Low

[1] 0.8530551

##

$Up

[1] 1.149156

##

$FstepL

[1] 1e-09

##

$FstepU

[1] 1e-09

##

$Lvalue

[1] 3.84

##

$Uvalue

[1] 3.84

We see the 95% confidence interval for S1(5)/S2(5) is [0.8530551, 1.149156]. Exercise:
find the 95% confidence interval for the ratio F1(5)/F2(5) .

3.4 Restricted Mean Survival Time

When the largest survival time in a sample is right censored, the Kaplan-Meier estimator
is un-defined beyond the last observed time. Thus the mean survival time estimator based
on the Kaplan-Meier estimator of the survival time cannot be defined. In those cases we
often use the ‘restricted mean’ as a measure of the average survival.

The restricted mean survival time is used often in the comparison of cancer treatments.
By definition, the restricted mean survival time (RMST) is

µ(τ) =

ˆ τ

0
1− F (s)ds

where τ is a prespecified time. An obvious estimate of the RMST is to replace F (s) by the
Kaplan-Meier F̂ (s). By an integration by parts, we can rewrite the RMST as

µ(τ) =

ˆ ∞
0

min(s, τ) dF (s)

11

and the estimate as (assume we always have Kaplan-Meier drop down to zero at infinity)

µ̂(τ) =

ˆ ∞
0

min(s, τ) dF̂ (s)

For more discussions and references, please see the R package survRM2 and references
therein.We used the dataset ovarian from the survival package and pre-select the time
restriction τ= 600. Suppose we are trying to test the hypothesis H0: µ̂(600) = 530.

library(survival)

library(emplik)

data(ovarian)

RMSTfun <- function(x) {pmin(x, 600) - 530}
el.cen.EM2(x=ovarian$futime, d=ovarian$fustat, fun=RMSTfun, mu=0)

$loglik

[1] -48.13337

##

$times

[1] 59 115 156 268 329 353 365 431 464 475 563 638 1227

##

$prob

[1] 0.01669385 0.01789823 0.01889634 0.02229227 0.02471097 0.02581288

[7] 0.02640152 0.03250394 0.03681496 0.03792030 0.05351697 0.06241253

[13] 0.62412525

##

$lam

[1] -0.0719794

##

$iters

[1] 25

##

$`-2LLR`

[1] 2.9891

##

$Pval

[1] 0.08382675

We see that the p-value of the test is 0.0838. Next we try to construct the 95% confidence
interval for RMST. This is accomplished by the function findUL from the package emplik,
which in turn requires a function that returns log likelihood in testing a hypothesis about
theta.

myfun8 <- function(theta, x, d) {
el.cen.EM2(x, d, fun=function(t){pmin(t, 600) - theta}, mu=0)

}
findUL(step=10, fun=myfun8, MLE=500, x=ovarian$futime, d=ovarian$fustat)

12

$Low

[1] 406.4569

##

$Up

[1] 535.4033

##

$FstepL

[1] 1e-07

##

$FstepU

[1] 1e-07

##

$Lvalue

[1] 3.84

##

$Uvalue

[1] 3.84

The input MLE in the findUL is supposed to be the MLE of the parameter that we are
try to find its confidence interval, in our case it is the MLE of RMST. But it do not have to
be very accurate, a ballpark value will work. We set the option step=10 in finfUL, since the
numbers here are large. Ideally step should be similar to (or 1/2 of) the standard deviation
of the MLE.

A much faster version of the calculation (replacing el.cen.EM2) is available in the package
KMC.

Exercise: find the 95% confidence interval for the ratio of RMST when we have two
samples of censored survival times.

By using the R package KMC, we get the same result but the speed is vastly improved.

library(survival)

library(emplik)

library(kmc)

Warning: package ’kmc’ was built under R version 3.2.5

Loading required package: compiler

Loading required package: rootSolve

Warning: package ’rootSolve’ was built under R version 3.2.5

data(ovarian)

junkf <- function(x){ pmin(x,600) - 532.6 }
kmc.solve(x=ovarian$futime, d=ovarian$fustat, g=list(junkf))

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

##

13

A Recursive Formula for the Kaplan-Meier Estimator with Constraint

Information:

Number of Constraints: 1

lamda(s): 0.07839129

##

Log-likelihood(Ha) Log-likelihood(H0) -2LLR p-Value(df=1)

Est -46.639 -48.329 3.380 0.066

myfun9 <- function(theta, x, d){
ff <- function(t){pmin(t, 600) - theta}
temp <- kmc.solve(x, d, g=list(ff))

list("-2LLR" = temp$"-2llr")

}

findUL(step=15, fun=myfun9, MLE=532.22, x=ovarian$futime, d=ovarian$fustat)

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

14

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

15

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

Warning in qchisq(-2 * (loglik.ha - loglik.null), df = length(g)): NaNs produced

$Low

[1] 406.4569

##

$Up

[1] 535.4033

##

$FstepL

[1] 1.5e-07

##

$FstepU

[1] 1.5e-07

##

$Lvalue

[1] 3.84

##

$Uvalue

[1] 3.84

3.5 Difference of two Restricted Mean Survival Times

We try to find the confidence interval for the difference of two RMST from two samples.
We use dataset pbc from survival package. Here we take τ = 10 years = 3652.5 days. In
order to compare with the output of survRM2, we use the exact the same data cases as
their example.

mypbc <- pbc[1:312,]

pbcX1 <- mypbc$time[mypbc$trt==1]

pbcX2 <- mypbc$time[mypbc$trt==2]

pbcD1 <- mypbc$status[mypbc$trt==1]

pbcD2 <- mypbc$status[mypbc$trt==2]

pbcd1 <- as.numeric(pbcD1==2)

pbcd2 <- as.numeric(pbcD2==2)

Thetafun <- function(theta, x1, d1, x2, d2) {
RMSTdiff <- function(r, x1, d1, x2, d2, theta){

temp1 <- el.cen.EM2(x=x1, d=d1, fun=function(x){pmin(x, 3652.5)}, mu=r)

temp2 <- el.cen.EM2(x=x2, d=d2, fun=function(x){pmin(x, 3652.5)}, mu=r-theta)

16

return(temp1$"-2LLR" + temp2$"-2LLR")

}

temp <- optimize(f=RMSTdiff,

lower=1500,

upper=3100,

x1=x1,

d1=d1,

x2=x2,

d2=d2,

theta=theta)

cstar <- temp$minimum

val <- temp$objective

list("-2LLR"=val, cstar=cstar)

}

findUL(step=100, fun=Thetafun, MLE=0, x1=pbcX1, d1=pbcd1, x2=pbcX2, d2=pbcd2)

$Low

[1] -340.4272

##

$Up

[1] 243.4025

##

$FstepL

[1] 1e-06

##

$FstepU

[1] 1e-06

##

$Lvalue

[1] 3.84

##

$Uvalue

[1] 3.84

Clearly this coding consist of three blocs. (In the binomial success probabilities ratio
example in section two, there are also these three functional blocs). The first bloc is the
RMSTdiff function, which computes the log likelihood ratio from each sample and sum them
together. Please note here we introduced a nuisance parameter (RMST of sample one, r) to
make the calculation of empirical likelihood easy. The second bloc is the optimize function.
We use optimize to profile out the nuisance parameter r, in this case it is the RMST of the
sample one. Two points of caution: the log likelihood ratio from the first bloc may not be
smooth [but here it is smooth]. An example is the testing of quantile/medians. If that is
the case, optimize will have to be applied after some smoothing, otherwise it does not work.
Another point is the lower and upper bound of the search. This must take into account the

17

value and approximate confidence interval for the nuisance parameter. Here the RMST of
sample 1 has value approximate 2612 and (95%) confidence interval approximately 2400 to
2815. This make us supply the lower = 1500 days and upper = 3100 days. When in doubt,
a larger range can be used. The drawback is the search will be slower.

The third bloc is the findUL function. Where you need to input the step. Here we can
roughly know the width of final confidence interval should be at least 400 days. So we use
step =100. The final confidence interval of the difference, RMST1 - RMST2 is: [-340.4272,
243.4025].

3.6 Ratio of two Restricted Mean Survival Times

Continue from the example in section 3.5, we try to find the confidence interval for the ratio
of two RMST from two samples. We still use dataset pbc from survival package.

Thetafun <- function(theta, x1, d1, x2, d2) {
RMSTratio <- function(r, x1, d1, x2, d2, theta){

temp1 <- el.cen.EM2(x=x1,d=d1,fun=function(x){pmin(x, 3652.5)},mu=r*theta)
temp2 <- el.cen.EM2(x=x2,d=d2,fun=function(x){pmin(x, 3652.5)},mu=r)

return(temp1$"-2LLR" + temp2$"-2LLR")

}

temp <- optimize(f=RMSTratio,

lower=1500,

upper=3100,

x1=x1,

d1=d1,

x2=x2,

d2=d2,

theta=theta)

cstar <- temp$minimum

val <- temp$objective

list("-2LLR"=val, cstar=cstar)

}

findUL(step=0.5, fun=Thetafun, MLE=1, x1=pbcX1, d1=pbcd1, x2=pbcX2, d2=pbcd2)

$Low

[1] 0.8782903

##

$Up

[1] 1.09761

##

$FstepL

[1] 5e-09

##

$FstepU

18

[1] 5e-09

##

$Lvalue

[1] 3.839998

##

$Uvalue

[1] 3.839997

Please note this is the 95% confidence interval for the ratio of RMST1/RMST2. In this
case it is [0.8782903, 1.09761]. To see more discussions, please see the R package RMST2 and
references there in. The method used there is the Wald confidence interval. The advantage
of the method used here is that we do not have to worry what transformation to use when
work on the confidence interval for the difference of two RMST, for example.

4 AUC of ROC Curve:

This is also a two-sample setting but the statistic is a U-statistics type: E(I[X ≥ Y]) =
AUC. The computation of the empirical likelhood is achieved by the so called ELseesaw
method.

library(pROC)

Warning: package ’pROC’ was built under R version 3.2.5

Type ’citation("pROC")’ for a citation.

##

Attaching package: ’pROC’

The following objects are masked from ’package:stats’:

##

cov, smooth, var

library(pAUC)

Error in library(pAUC): there is no package called ’pAUC’

data(aSAH)

auc(aSAH$outcome, aSAH$s100b)

Area under the curve: 0.7314

xx <- aSAH[,6]

xxx <- xx[aSAH[,2]=="Good"]

yyy <- xx[aSAH[,2]=="Poor"]

eltest2step.all(true=0.72, x=xxx, y=yyy, tol=0.0001)

Error in eval(expr, envir, enclos): could not find function "eltest2step.all"

19

find.UL(step=0.6, fun=eltest2step.all, MLE=0.73, x=xxx, y=yyy, tol=0.0001)

Error in eval(expr, envir, enclos): could not find function "find.UL"

find.UL(step=0.002, fun=neighb.xy3p12, MLE=0.031, vp=c(0,0.1), x=xxx, y=yyy,

tol=0.0001, eps=0.02, level=0.9)

Error in eval(expr, envir, enclos): could not find function "find.UL"

5 Reference:

Reference:
Zhao, Y. and Zhou, M. (2016) Partial AUC for ROC curve by Empirical Likelihood
Zhou, M. (2016) Empirical Likelihood Methods in Survival Analysis CRC Press

20

