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Abstract

The relationship between two independent binomial proportions is commonly estimated and presented

using the difference between proportions, the number needed to treat, the ratio of proportions or the

odds ratio. Several different confidence intervals are available, but they can produce markedly different

results. Some of the traditional approaches, such as the Wald interval for the difference between

proportions and the Katz log interval for the ratio of proportions, do not perform well unless the

sample size is large. Better intervals are available. This article describes and compares approximate and

exact confidence intervals that are – with one exception – easy to calculate or available in common

software packages. We illustrate the performances of the intervals and make recommendations for both

small and moderate-to-large sample sizes.
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1 Introduction and notation

A frequent task in medical statistics is to compare two independent binomial proportions. It
occurs both in experimental trials and in observational studies when a dichotomous variable is
compared in two independent samples. The dichotomous variable is often the occurrence of an
event, for example in randomized controlled trials (RCTs) and cohort studies, where the event
may be the primary outcome of interest. In observational studies, some patient characteristics,
such as the presence of certain diseases, are dichotomous, and the proportions of diseased patients
are compared between exposed and unexposed groups. Another example is unmatched case–
control studies where the proportions of exposed subjects are compared between cases and
controls.
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The two possible outcomes of a dichotomous variable are often referred to as success and failure.
The successes do not necessarily indicate a favourable outcome, but rather the outcome of interest,
which is the outcome we count. We may summarize the outcomes of two independent groups in a
2 � 2 table (Table 1). The number of subjects in each group (n1+ and n2+) is assumed to be fixed by
the design. We further assume that the subjects in group 1 have probability of success equal to p1,
and that the subjects in group 2 have probability of success equal to p2. This design is usually
referred to as the one margin fixed design, which is the basic design for RCTs, cohort studies and
case–control studies. Other designs may also be summarized in a 2 � 2 table, most notably the both
margin fixed design – hardly ever used in practice – and the total number fixed design, which is
used in cross-sectional studies. Neither of these two designs leads to two binomial samples.
However, 2 � 2 tables from cross-sectional studies are often analysed conditionally, as if they
were sampled under the one margin fixed design.

The number of successes in group 1 is binomially distributed with parameters n1+ and p1. In a
similar manner, the number of successes in group 2 is binomially distributed with parameters n2+
and p2. We shall estimate the parameters p1 and p2 by the sample proportions

p̂1 ¼
n11
n1þ

and p̂2 ¼
n21
n2þ

, ð1Þ

which are the maximum likelihood estimates. Let n¼ {n11, n12, n21, n22} denote the observed table,
and za/2 the upper a/2 percentile of the standard normal distribution. For example, if a¼ 0.05,
za/2¼ 1.96.

The purpose of this article is to describe and recommend two-sided 100(1 � a)% confidence
intervals for the difference between proportions (Section 4), the number needed to treat (NNT;
Section 5), the ratio of proportions (Section 6) and the odds ratio (OR; Section 7). We do not
aim to present a systematic or complete review of all available intervals, but we shall consider the
most commonly used and recommended ones. Special attention will be paid to simple intervals, i.e.
intervals that can be easily explained and computed or intervals that are readily available in common
software packages. We do not consider intervals that have not been thoroughly evaluated – even
though they may show initial promise – but some are mentioned and referenced. There are many
more measures of relationship between binomial proportions than the four presented here. We refer
to Hamilton1 for an overview.

In Section 2, we present the data from a RCT of epinephrine in children with cardiac arrest,
which are subsequently used to illustrate the difference between the confidence intervals we consider
in Sections 4–7. Section 3 outlines our criteria for how we compare different confidence intervals.
Recommendations are given in Section 8.

Our focus here is estimation of confidence interval. Hypothesis tests for association in 2 � 2 tables
have been described and recommended by Lydersen et al.2

Table 1. The observed counts of a 2� 2 table

Success Failure Sum

Group 1 n11 n12 n1+
a

Group 2 n21 n22 n2+
a

Sum n+1 n+2 Na

aFixed by design.

2 Statistical Methods in Medical Research 0(0)
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2 Example: epinephrine in children with cardiac arrest

Children who remain in cardiac arrest after cardiopulmonary resuscitation are administered with an
initial standard dose of epinephrine. If resuscitation is unsuccessful, should the next dose be the same
dose or a higher dose? Perondi et al.3 randomized 34 patients to receive a high dose and 34 patients
to receive the standard dose of epinephrine. The primary outcome measure was survival 24 h after
cardiac arrest. The results are displayed in Table 2. The authors estimated the OR for death with the
high-dose therapy to be 8.6 with 95% confidence interval from 1.0 to 397.0 and p ¼ 0.05.

Based on these results (and similar results from logistic regression), Perondi et al. suggest that
‘high-dose therapy may be worse than standard-dose therapy’. The p-value given above was
calculated using Fisher’s exact test (p ¼ 0.054).

It has previously been shown that better tests than Fisher’s exact test are available, such as exact
unconditional tests (p ¼ 0.028) and conditional mid-p tests (p ¼ 0.030).2 As is the case with test
statistics, different methods of calculating confidence intervals can also give markedly different
results, particularly when we consider the lengths of the intervals.

3 Criteria for comparing confidence intervals

The main property for evaluating the performance of a confidence interval is coverage probability.
The coverage probability is the probability that the confidence interval contains the true value. We
prefer this probability to be close to 1 � a, the nominal coverage probability, usually set to 95%.
Exact confidence intervals are required to have coverage probability at least the nominal size,
whereas approximate confidence intervals satisfy no such criterion. An interval that has too large
coverage probability is denoted as conservative. A liberal interval has coverage probability below
1 � a.

The coverage probability can be calculated exactly. Under the one margin fixed design, the
coverage probability can be expressed as

CP ¼
Xn1þ
x11¼0

Xn2þ
x21¼0

f ðxj p1, p2Þ � Iðxj p1, p2Þ, ð2Þ

where x denotes the table {x11, n1+� x11, x21, n2+�x21}, f the probability of observing x given p1
and p2 and I an indicator function that equals 1 if the confidence interval for table x includes the true
value – as defined by p1 and p2 – else it is 0. In short, the coverage probability for a given interval and
point in the parameter space is the sum of the probability of all possible tables having confidence
limits that enclose the true value.

Table 2. The results of a RCT of epinephrine in children with cardiac arrest3

Survival at 24 h

Treatment Yes No Sum

Standard dose 7 27 34a

High dose 1 33 34a

Sum 8 60 68a

aFixed by design.

Fagerland et al. 3
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If two or more intervals have similar coverage probabilities, we can compare their lengths, and we
prefer the shorter one. Note that an interval with low coverage probability is usually shorter than an
interval with large coverage probability.

In our presentation of confidence intervals (Sections 4.2, 6.2 and 7.2), we note whether the
intervals produce non-sensical or uninformative results. Overshoot happens when one or both
confidence limits lie outside the permissible range of the measure. The difference between
proportions, for example, is limited to the range [�1, 1]. Uninformative intervals can be either of
zero-width, for example (1, 1), or with incomputable limits.

In cases where an interval has incomputable limits, we set the limits to the entire range of the
measure – e.g. (0, 1) for the ratio of proportions – such that the probabilities of those tables are
included in the calculations of the coverage probability (Equation (2)).

Other properties we consider beneficial for a confidence interval are simplicity, availability in
software packages, consistency with tests and symmetry of coverage. Detailed criteria for evaluating
the confidence intervals that go beyond the ones presented here have been set out by Newcombe.4,5

4 The difference between proportions

4.1 Introduction and estimate

The difference between proportions, or success probabilities,

� ¼ p1 � p2,

is an important effect measure for RCTs and cohort studies. In addition to its inherent value as an
effect measure, its estimate and confidence interval are used to derive the estimate and confidence
interval of the NNT (Section 5). The difference between proportions is also called the probability
difference, or when the event in question is a harmful one, the risk difference. In epidemiology, it is
often called the absolute risk reduction or the attributable risk (reduction). We estimate the
difference between proportions using the sample proportions:

�̂ ¼ p̂1 � p̂2 ¼
n11
n1þ
�

n21
n2þ

: ð3Þ

4.2 Confidence intervals

4.2.1 Wald
The traditional Wald confidence interval for � is based on the asymptotic normal distribution of �̂:6

�̂� z�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1ð1� p̂1Þ

n1þ
þ
p̂2ð1� p̂2Þ

n2þ

s
: ð4Þ

The Wald interval has zero-width when (1) n11¼ n21¼ 0 or n12¼ n22¼ 0, which gives the interval
(0, 0); (2) n11¼ n22¼ 0, which gives the interval (�1, �1); and (3) n12¼ n21¼ 0, which gives the
interval (1, 1).

A continuity corrected version due to Yates7 can be expressed, as shown in Equation (5):8

�̂�

"
z�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1ð1� p̂1Þ

n1þ
þ
p̂2ð1� p̂2Þ

n2þ

s
þ
1

2

�
1

n1þ
þ

1

n2þ

�#
: ð5Þ
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The Wald interval with continuity correction avoids zero-width but has a higher overshoot rate.5

Overshoot (intervals outside [�1, 1]) is also possible with the Agresti–Caffo interval (Section 4.2.2).
The problem of overshoot can be easily eliminated by truncation for Wald, Wald with continuity
correction and Agresti–Caffo, although the resulting interval may not be entirely satisfactorily.

4.2.2 Agresti–Caffo
Agresti and Caffo9 proposed a simple, yet effective procedure for computing a confidence interval:
add one success and one failure in each sample and calculate the Wald confidence interval on the
resulting data:

�p1 � �p2 � z�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p1ð1� �p1Þ

�n1þ
þ

�p2ð1� �p2Þ

�n2þ

s
, ð6Þ

where

�n1þ ¼ n1þ þ 2, �n2þ ¼ n2þ þ 2, �p1 ¼ ðn11 þ 1Þ= �n1þ, �p2 ¼ ðn21 þ 1Þ= �n2þ:

Note that our estimate of the difference between proportions is still given by the difference in sample
proportions (Equation (3)), the calculations of �p1 and �p2 go only into the calculations of the
confidence interval.

The Agresti–Caffo interval is usually consistent with the results of the much-used Pearson’s chi-
squared test,9 but it can produce overshoot (Section 4.2.1). We note that adjustments, such as adding
values to the observed counts – as it is done in the Agresti–Caffo interval – are discouraged on
general principles by some authors, for instance Hirji10 (p. 78).

4.2.3 Newcombe hybrid score
Newcombe5 proposed a confidence interval for � based on the Wilson11 score confidence interval
for a single proportion. We calculate the intervals for p1 and p2 by

p̂i

�
niþ

niþ þ z2�=2

�
þ
1

2

�
z2�=2

niþ þ z2�=2

�

� z2�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

niþ þ z2�=2

"
p̂ið1� p̂iÞ

�
niþ

niþ þ z2�=2

�
þ
1

4

�
z2�=2

niþ þ z2�=2

�#vuut for i ¼ 1, 2:

Denote the interval for p1 by (l1, u1) and the one for p2 by (l2, u2). The Newcombe hybrid score
confidence interval for � is given by

�̂�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
p̂1 � l1

�2
þ
�
u2 � p̂2

�2q
to �̂þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
p̂2 � l2

�2
þ
�
u1 � p̂1

�2q
: ð7Þ

4.2.4 Miettinen–Nurminen asymptotic score
We obtain a score interval by inverting two one-sided a/2-level score tests (the tail method), or one
two-sided a-level score test. For a specified value �02 (�1, 1), the score test statistic is

Tðnj�0Þ ¼
p̂1 � p̂2 ��0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~p1ð1� ~p1Þ

n1þ
þ

~p2ð1� ~p2Þ

n2þ

r , ð8Þ

Fagerland et al. 5
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where n denotes the observed table {n11, n12, n21, n22} and ~p1 and ~p2 the maximum likelihood
estimates of p1 and p2 subject to p1� p2¼�0. An asymptotic confidence interval based on
inverting two one-sided score tests (Equation (8)) was first proposed by Mee.12 Miettinen and
Nurminen13 suggested a similar interval based on the test statistic

Tðnj�0ÞMN ¼
p̂1 � p̂2 ��0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~p1ð1� ~p1Þ

n1þ
þ

~p2ð1� ~p2Þ

n2þ

r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

1

n1þ þ n2þ

s
: ð9Þ

The correction term in Equation (9) makes a difference only for small sample sizes. The Miettinen–
Nurminen asymptotic score confidence interval (L, U) for � is based on Equation (9) and obtained
by solving

TðnjLÞMN ¼ �z�=2 ð10Þ

and

TðnjUÞMN ¼ z�=2: ð11Þ

Miettinen and Nurminen showed that the restricted maximum likelihood estimates ( ~p1 and ~p2) can
be obtained by solving a cubic equation and gave unique closed-form expressions for them. We refer
to Ref. 13 and to the almost equal expressions in Farrington and Manning14 for details.

4.2.5 Exact unconditional intervals

In the previous section, we inverted two asymptotic tests to obtain an asymptotic score interval.
Equation (8) can also be used to construct exact tests, which can be inverted to obtain exact
unconditional score intervals. Under the restriction p1� p2¼�0, the domain of p1 given �0 is

Ið�0Þ ¼
�
p1 : maxð0,�0Þ � p1 � minð1, 1þ�0Þ

�
: ð12Þ

Let x¼ {x11, x12, x21, x22} denote any 2 � 2 table that might be observed given the fixed row sums.
The probability of observing x is the product of the likelihoods for the number of successes in the
two samples:

f ðxj p1,�0Þ ¼
x1þ
x11

� �
px11
1 ð1� p1Þ

x12 �
x2þ
x21

� �
ð p1 ��0Þ

x21ð1� p1 þ�0Þ
x22 :

Inverting two one-sided score tests (Chan–Zhang). The interval by Chan and Zhang15 is based on
inverting two one-sided exact score tests of size at most a/2 (the tail method). Define

P
�
TðnÞj p1,�0

�
¼

X
TðxÞ�TðnÞ

f ðxj p1,�0Þ

and

Q
�
TðnÞj p1,�0

�
¼

X
TðxÞ�TðnÞ

f ðxj p1,�0Þ:

6 Statistical Methods in Medical Research 0(0)
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where T(n) refers to the score test statistic in Equation (8). We eliminate the nuisance parameter p1
by taking the supremum over the range I(�0) given in Equation (12):

P
�
TðnÞj�0

�
¼ sup

p12Ið�0Þ

P
�
TðnÞj p1,�0

�
ð13Þ

and

Q
�
TðnÞj�0

�
¼ sup

p12Ið�0Þ

Q
�
TðnÞj p1,�0

�
: ð14Þ

The Chan–Zhang confidence interval (L, U) for � is the solution of

Q
�
TðnÞjL

�
¼ �=2 ð15Þ

and

P
�
TðnÞjU

�
¼ �=2: ð16Þ

Inverting one two-sided score test (Agresti–Min). Instead of inverting two one-sided tests, Agresti
and Min16 proposed to invert one two-sided test of size at most a. Using the score test statistic in
Equation (8), we define

R
�
TðnÞj p1,�0

�
¼

X
jTðxÞj�jTðnÞj

f ðxj p1,�0Þ,

and eliminate the nuisance parameter p1 by maximizing over all possible values, i.e.

R
�
TðnÞj�0

�
¼ sup

p12Ið�0Þ

R
�
TðnÞj p1,�0

�
: ð17Þ

The Agresti–Min confidence interval (L, U) for � is the solution of

R
�
TðnÞjL

�
¼ � ð18Þ

and

R
�
TðnÞjU

�
¼ �, ð19Þ

such that R(T(n)W�0)< a when �0<L and R(T(n)W�0)<a when �0>U.

Inverting two one-sided unstandardized tests (Santner–Snell). Santner and Snell17 used the tail
method (see the description of the Chan–Zhang interval) with the unstandardized difference between
proportions,

TðnÞSS ¼ p̂1 � p̂2, ð20Þ

as test statistic. We include the Santner–Snell interval in our selection of intervals for the difference
between proportions because it is available in the much-used software package SAS (SAS Institute
Inc.).

The Berger and Boos procedure. The procedure by Berger and Boos18 is a general approach to
reduce the conservatism of exact unconditional methods. Instead of maximizing over the entire
range of the nuisance parameter, as it is done, for example, in Equations (13), (14) and (17), the

Fagerland et al. 7
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maximization is done over a restricted range of values. This range is taken to be a 100(1 � g)%
confidence interval for the nuisance parameter, where g is very small, say 0.0001.

4.3 Comparisons of intervals

The comparisons in this section are based on exact calculations of coverage probabilities (Section 3).
Several sample sizes and combinations of p1 and p2 were used. For the figures shown – which are
used as a starting point for the discussion on interval performance – we selected sample sizes and
fixed values of � in a manner that serves to illustrate typical differences and similarities between the
intervals. In addition, we sometimes refer to calculated coverage probabilities that are not shown in
the figures. The results from our calculations are consistent with those published in previous papers.

4.3.1 Approximate intervals
Figure 1 shows the coverage probabilities of four of the five approximate intervals presented in
Section 4.2 for one small sample size and one medium sample size. We did not include Wald with
continuity correction in these plots as this interval is generally too conservative, even for large
sample sizes, to consider it further.5,9 For small sample sizes, such as n1+¼ n2+¼ 10, the
Newcombe hybrid score and the Miettinen–Nurminen asymptotic score intervals perform
generally well; both these intervals have coverage probabilities close to the nominal level of 95%,
but they can be liberal. The Agresti–Caffo interval is slightly conservative with a mean coverage
probability of 97% for the sample size and parameter values shown in the left panel of Figure 1. The
Wald interval is seriously liberal with coverage probabilities in the range 92–94% for most
situations, and even lower coverage probabilities for proportions below 5% or above 95%.

With increasing sample size, the coverage probabilities of the Agresti–Caffo, Newcombe hybrid
score, and Miettinen–Nurminen asymptotic score intervals become more and more similar (right
panel of Figure 1). When n1+¼ n2+¼ 40, the three intervals perform almost equally, except when
one or both proportions are close to 0 or 1, where the asymptotic score interval can be somewhat
liberal. In contrast, the Wald interval is still quite liberal for most parameter values at

Figure 1. Coverage probabilities of the Wald, Agresti–Caffo, Newcombe hybrid score and Miettinen–Nurminen

asymptotic score intervals for sample sizes n1+¼ n2+¼ 10 (left) and n1+¼ n2+¼ 40 (right).

Note: The difference between proportions is fixed at 0.2 (left) and 0.3 (right).

8 Statistical Methods in Medical Research 0(0)
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n1+¼ n2+¼ 40, and it does not, in general, achieve approximately nominal coverage probabilities
until n1+¼ n2+¼ 100.

The Agresti–Caffo, Newcombe hybrid score and Miettinen–Nurminen asymptotic score intervals
all cope well with unequal sample sizes, for instance, n1+¼ 20, n2+¼ 10 (results not shown). The
Wald interval has coverage probabilities further lowered by unbalanced samples.

For small sample sizes, none of the intervals perform particularly well when both proportions are
close to either 0 or 1. This improves with increasing sample size. For 30 or more in each sample, the
Agresti–Caffo interval performs acceptably. For the Newcombe hybrid score interval, 40 or more in
each sample ensures acceptable coverage probabilities. A recent bootstrap interval by Lin et al.,19

based on the median unbiased estimate,20 is reported to have favourable properties for small sample
sizes and when the success probability is close to 0 or 1.

The Newcombe hybrid score and the Miettinen–Nurminen asymptotic score intervals have
approximately equal lengths,5 and both tend to be shorter than the Agresti–Caffo interval.9

4.3.2 Exact intervals
Figure 2 illustrates the difference in coverage probabilities of the Santner–Snell, Chan–Zhang and
Agresti–Min exact unconditional intervals. The unstandardized test statistic used in the Santner–
Snell interval can be seriously discrete with small sample sizes, which makes the interval overly
conservative. The lower bound on the coverage probability of tail method intervals such as Santner–
Snell is sometimes 1� a/2 instead of 1� a.21

The two intervals based on inverting exact score tests sometimes perform similarly, for instance,
when n1+¼ n2+¼ 15 and p1� p2¼ 0.2 (left panel of Figure 2). However, the Chan–Zhang interval
can be seriously conservative, as shown in the right panel of Figure 2. Agresti and Min16 and
Agresti21 demonstrate that inverting one two-sided test (Agresti–Min interval) is less conservative
and gives shorter intervals than inverting two one-sided tests (Chan–Zhang interval). This difference
in coverage probabilities is often exaggerated when the sample sizes are unequal,16 as shown in the
right panel of Figure 2.

,

Figure 2. Coverage probabilities of the Santner–Snell, Chan–Zhang and Agresti–Min exact unconditional intervals

for sample sizes n1+¼ n2+¼ 15 (left) and n1+¼ 15, n2+¼ 5 (right).

Note: The difference between proportions is fixed at 0.2 (left) and 0.3 (right).

Fagerland et al. 9
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Intervals based on inverting two one-sided exact tests are defined so that the non-coverage
probability in each tail is no more than a/2, whereas intervals that invert one two-sided exact test
are constructed so that the sum of the non-coverage probabilities in the two tails is no more than a.
The only practical disadvantage of using an interval based on a two-sided test is that the endpoints
are not consistent with the results of one-sided tests, which are used in studies that aim to show that
a new treatment improves upon a standard one. In such studies, Agresti21 suggests that a one-sided
confidence bound is used instead of a confidence interval.

The Berger and Boos procedure has been recommended for the Chan–Zhang and Agresti–Min
confidence intervals,22 however, both Chan and Zhang15 and Agresti and Min16 claim that it does
not improve the performance of their intervals. Nevertheless, by limiting the range over which the
maximization is performed, the procedure may reduce the computation time. Another feature of
using the Berger and Boos procedure is that we exclude values of the nuisance parameter that are
highly unlikely given the observed data, thereby accommodating one element of the criticism against
exact unconditional inference (Agresti,23 p. 95). In our calculations, we have used the Berger and
Boos procedure with g ¼ 0.000001 (default in StatXact 9, Cytel Inc.). We note that the Santner–Snell
interval is quite sensitive to the value of g. For larger values of g than the above, such as 0.001 and
0.0001, and for no Berger and Boos correction (g¼ 0), the Santner–Snell interval can be even more
conservative than what is shown in Figure 2. No optimal choice for g has been suggested for exact
unconditional intervals, but Lydersen et al.24 recommend g¼ 0.0001 for the exact unconditional z-
pooled test.

A detailed comparison of asymptotic and exact score intervals is given in Santner et al.25 The
authors recommend the Coe–Tamhane interval26 followed by the Agresti–Min and the Chan–
Zhang intervals. They do not recommend the asymptotic score interval because the coverage
probabilities of that interval was below the nominal level (90%) for nearly half of the studied
cases. However, that conclusion has been disputed by Newcombe and Nurminen,27 who point out
that Santner et al. used a criterion of strict conservatism – thus favouring exact intervals – and that
the asymptotic score interval in that study is the Mee interval, not the Miettinen–Nurminen
interval.

4.3.3 The best performing approximate and exact intervals
In Figure 3, we compare the three best performing confidence intervals for the difference between
proportions using two small sample size combinations. The Agresti–Min exact unconditional
interval is generally superior to the other two intervals, particularly when proportions are close
to 0 or 1. Its coverage probability is consistently close to the nominal level, whereas the Agresti–
Caffo and the Newcombe hybrid score intervals can be moderately conservative and liberal,
respectively.

4.3.4 Example: data from Table 2
In Section 2, we presented the results from a RCT of high-dose versus standard-dose epinephrine in
children with cardiac arrest. The observed proportion of survival in the standard-dose group was
p̂1 ¼ 7=34 ¼ 0:21, and in the high-dose group, it was p̂2 ¼ 1=34 ¼ 0:029. We estimate the difference
between proportions as �̂ ¼ 0:18. Seven different confidence intervals are shown in Table 3.
The Wald interval is shorter than the other intervals, which is not surprising as the coverage
probability of the Wald interval is generally below the nominal level. All the intervals give similar
results, except for the Santner–Snell interval, which is about 50% wider than the other intervals and
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the only one to include zero. The other two exact intervals (Chan–Zhang and Agresti–Min) are
slightly wider than the approximate intervals. The results indicate a reduced survival with high-dose
therapy.

5 The NNT

The NNT is a useful way of summarizing the results from studies of two treatments or exposures.28

When presented with a proper confidence interval, the NNT is particularly suitable for
clinical decision making, as it incorporates both statistical and clinical significance by dealing
with numbers of patients rather than probabilities.29 This view is, however, not universally
acknowledged, and some authors argue that the NNT can be confusing, particularly for
clinicians.30

As the name indicates, it is most often used in clinical trials of two treatments, but it may also be
used in observational studies, where the NNT is sometimes called the number needed to be
exposed.31 In the following, we shall explain and illustrate the NNT in the context of two
competing treatments: one new (group 1) versus one standard (group 2) treatment.

Figure 3. Coverage probabilities of the three best performing confidence intervals for the difference between

proportions.

Table 3. Confidence intervals for the difference between proportions using data from Table 2

Confidence interval

Lower Upper Length

Wald 0.029 0.32 0.29

Agresti–Caffo 0.012 0.32 0.31

Newcombe hybrid score 0.019 0.34 0.32

Miettinen–Nurminen asymptotic score 0.028 0.34 0.31

Santner–Snell exact unconditional �0.069 0.41 0.48

Chan–Zhang exact unconditional 0.019 0.36 0.34

Agresti–Min exact unconditional 0.024 0.35 0.33

Note: The estimate is �̂ ¼ 0:18.

Fagerland et al. 11
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The NNT is the number of patients that would have to be treated with a new treatment instead of
a standard treatment for one additional patient to benefit. It can be estimated by the reciprocal of
the difference between proportions:

NNT ¼
1

p̂1 � p̂2
:

We have now assumed that a positive value of p̂1 � p̂2, and thereby a positive value of NNT,
indicates that the new treatment is superior to the standard treatment (i.e. p1 and p2 are the
probabilities of a beneficial event). To calculate a confidence interval for the NNT, we first
compute a confidence interval for the difference between proportions using one of the intervals in
Section 4. Denote the lower and upper limits of that interval by L and U.

We need to distinguish between positive and negative values of NNT. As suggested by Altman,32

it may be informative to denote positive values of NNT by NNTB: the number of patients needed to
be treated for one additional patient to benefit. In a similar manner, negative values of NNT can be
made positive and denoted by NNTH: the number of patients needed to be treated for one
additional patient to be harmed.

If the confidence interval for the difference between proportions does not include zero, the
confidence interval for NNTB and NNTH can be obtained by taking the reciprocals of the
absolute values of L and U and reversing their order:

1=jUj to 1=jLj: ð21Þ

If, on the other hand, the interval (L, U) contains zero, the confidence interval for the NNT should32

be denoted by

NNTH 1=jLj to 1 to NNTB 1=U: ð22Þ

Example: data from Table 2. The estimate of the number needed to be treated with the standard
compared with the high dose of epinephrine for one additional patient to survive is

NNT ¼
1

p̂1 � p̂2
¼

1

0:18
¼ 5:6:

Based on the computed confidence intervals for the difference between proportions in Table 3, we
calculate seven different confidence intervals for the NNT (Table 4). We note that calculating
confidence intervals for the NNT using the Newcombe hybrid score interval has been
recommended by Bender.33

6 The ratio of proportions

6.1 Introduction and estimate

In Section 4, we considered the difference between proportions. Another measure of interest is the
ratio of proportions:

� ¼
p1
p2
:
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It is mostly used in cohort studies where the proportions are defined as the probabilities of a harmful
event. The ratio of proportions is then called the risk ratio or the relative risk and measures the
elevated risk in one group compared with the other.

We estimate the ratio of proportions using the sample proportions:

�̂ ¼
p̂1
p̂2
¼

n11=n1þ
n21=n2þ

: ð23Þ

6.2 Confidence intervals

6.2.1 Katz log
Katz et al.34 showed that the logarithm of the ratio of proportions is approximately normal
distributed. Using the delta method, we obtain a confidence interval for � by exponentiating the
endpoints of

logð�̂Þ � z�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n11
þ

1

n21
�

1

n1þ
�

1

n2þ

s
: ð24Þ

This interval cannot be computed when n11¼ 0 or n21¼ 0. When n11¼ n1+ and n21¼ n2+, the
estimate of standard error is zero, resulting in the interval (1, 1).

6.2.2 Adjusted log
An adjusted log interval for � can be obtained by adding 1/2 success to each group (Walter35):

�̂1=2 ¼

�
n11 þ 0:5

�	�
n1þ þ 0:5

��
n21 þ 0:5

�	�
n2þ þ 0:5

� :
Using the variance estimate of Pettigrew, et al.36 a confidence interval for � is given by
exponentiating the endpoints of

logð�̂1=2Þ � z�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n11 þ 0:5
þ

1

n21 þ 0:5
�

1

n1þ þ 0:5
�

1

n2þ þ 0:5

s
: ð25Þ

This method allows for zero events in either group but produces the zero-width interval (1, 1) when
n11¼ n1+ and n21¼ n2+. The adjusted log interval excludes the estimate of the ratio of proportions

Table 4. Confidence intervals for the NNT with standard versus high-dose epinephrine

using the confidence intervals for the difference between proportions in Table 3

Wald NNTB 3.1 to 34

Agresti–Caffo NNTB 3.1 to 83

Newcombe hybrid score NNTB 2.9 to 53

Miettinen–Nurminen asymptotic score NNTB 2.9 to 36

Santner–Snell exact unconditional NNTB 2.4 to 1 to NNTH 14

Chan–Zhang exact unconditional NNTB 2.8 to 53

Agresti–Min exact unconditional NNTB 2.9 to 42

Note: The estimate is NNT¼ 5.6.

Fagerland et al. 13
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given by Equation (23) in two cases: (1) when n11¼ 0 and n21 6¼ 0, where �̂ ¼ 0 and the lower
endpoint is L> 0; and (2) when n11 6¼ 0 and n21¼ 0, where �̂ ¼ 1 and the upper endpoint is finite.

6.2.3 Inverse hyperbolic sine
Using the inverse hyperbolic sine transformation, Newcombe37 forms a confidence interval for � by
exponentiating the endpoints of

logð�̂Þ � 2 sinh�1

 
z�=2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n11
þ

1

n21
�

1

n1þ
�

1

n2þ

s !
: ð26Þ

If n11¼ 0 or n21¼ 0, substitute the zero cell entry with z2�=2 before calculating the interval. As was the
case for the Katz log and the adjusted log intervals, the inverse sinh interval is equal to (1, 1) when
n11¼ n1+ and n21¼ n2+. The inverse sinh interval excludes �̂ for the same situations as does the
adjusted log interval.

The inverse hyperbolic sine transformation was originally presented as an approach to confidence
interval estimation for a single binomial proportion and the OR. The extension to the ratio of
proportions was mentioned only briefly in Newcombe,37 but was later included in the evaluations
of Price and Bonett.38 The inverse hyperbolic sine interval for the OR has not been properly
evaluated yet and we do not consider it in Section 7.

6.2.4 Koopman asymptotic score
Koopman39 proposed an asymptotic score confidence interval for the ratio of proportions that is
always consistent with Pearson’s chi-squared test.39,40 The interval can be computed iteratively.
Define the function

Uð�Þ ¼
ðn11 � n1þ ~p1Þ

2

n1þ ~p1ð1� ~p1Þ

(
1þ

n11ð�� ~p1Þ

n2þð1� ~p1Þ

)
,

where

~p1 ¼
� � ðn1þ þ n21Þ þ n11 þ n2þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� � ðn1þ þ n21Þ þ n11 þ n2þ

�2
� 4� �Nðn11 þ n21Þ

q
2N

:

U is a convex function of �. (�L, �U) is a confidence interval for � if �L and �U are the two solutions
to the equation

Uð�Þ ¼ �21,1��, ð27Þ

where �21,1�� is the 1� a percentile of the chi-squared distribution with one degree of freedom and
�L<�U. If n11¼ 0, let �L¼ 0. If n21¼ 0, let �U¼1.

Using a series of substitutions, Nam41 solved Equation (27) analytically. The resulting closed-
form expression for the score interval is rather elaborate, and as such, we do not give it here.

The Koopman interval can distribute tail probabilities unevenly. If one-sided confidence intervals
are of interest, the skewness-corrected score interval by Gart and Nam40 can be used. In that same
paper, Gart and Nam show that the Koopman interval is almost identical to the asymptotic score
interval by Miettinen and Nurminen13–an interval for � analogous to that for � (Section 4.2.4).
Both intervals can be derived from the general theory of score methods by Gart.42
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6.2.5 Exact unconditional intervals
Exact unconditional intervals can be obtained by inverting two one-sided a/2-level exact tests (the
tail method), or one two-sided a-level exact test. For a specified value �0, the score test statistic for
the ratio of proportions is

Tðnj�0Þ ¼
p̂1 � �0p̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~p1ð1� ~p1Þ

n1þ
þ

~p2ð1� ~p2Þ

n2þ

r , ð28Þ

where n denotes the observed table, and ~p1 and ~p2 the maximum likelihood estimates of p1 and p2
subject to p1/p2¼�0. Closed-form expressions for ~p1 and ~p2 can be found in Miettinen and
Nurminen13 and Farrington and Manning.14

Under the restriction p1/p2¼�0, the domain of p1 given �0 is

Ið�0Þ ¼
�
p1 : 0 � p1 � minð�0, 1Þ

�
: ð29Þ

As before, let x¼ {x11, x12, x21, x22} denote any 2 � 2 table that might be observed given the fixed
row sums. The probability of observing x is the product of the likelihoods for the number of
successes in the two samples:

f ðxj p1,�0Þ ¼
x1þ
x11

� �
px11
1 ð1� p1Þ

x12 �
x2þ
x21

� �
ð p1=�0Þ

x21ð1� p1=�0Þ
x22 :

Inverting two one-sided score tests (Chan–Zhang). Using the method by Chan and Zhang,15 we
invert two one-sided exact score tests (Equation (28)) of size at most a/2 (the tail method). Define

P
�
TðnÞj p1,�0

�
¼

X
TðxÞ�TðnÞ

f ðxj p1,�0Þ

and

Q
�
TðnÞj p1,�0

�
¼

X
TðxÞ�TðnÞ

f ðxj p1,�0Þ:

The nuisance parameter p1 is eliminated by taking the supremum over the range I(�0) given in (29):

P
�
TðnÞj�0

�
¼ sup

p12Ið�0Þ
P
�
TðnÞj p1,�0

�
and

Q
�
TðnÞj�0

�
¼ sup

p12Ið�0Þ
Q
�
TðnÞj p1,�0

�
:

The Chan–Zhang confidence interval (L, U) for � is the solution of

Q
�
TðnÞjL

�
¼ �=2 ð30Þ
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and

P
�
TðnÞjU

�
¼ �=2: ð31Þ

Inverting one two-sided score test (Agresti–Min). Agresti and Min16 suggest a method based on
inverting one two-sided exact score test of size at most a. Define

R
�
TðnÞj p1,�0

�
¼

X
jTðxÞj�jTðnÞj

f ðxj p1,�0Þ:

We eliminate the nuisance parameter p1 by maximizing over all possible values, i.e.

R
�
TðnÞj�0

�
¼ sup

p12Ið�0Þ
R
�
TðnÞj p1,�0

�
:

The Agresti–Min confidence interval (L, U) for � is the solution of

R
�
TðnÞjL

�
¼ � ð32Þ

and

R
�
TðnÞjU

�
¼ �, ð33Þ

such that R(T(n)W�0)< a when �0<L and R(T(n)W�0)<a when �0>U.

The Berger and Boos procedure. The discussions in Sections 4.2.5 and 4.3.2 on the benefits of
using the Berger and Boos procedure also apply to exact unconditional intervals for the ratio of
proportions.

6.3 Comparisons of intervals

The discussions in Sections 6.3.1 and 6.3.2 are based on exact calculations of coverage probabilities
(Section 3) for several combinations of n1+, n2+, p1 and p2. The figures show some typical cases that
were selected for the purpose of illustration. Some of the statements on interval performance refer to
calculations that are not shown in the figures. Our findings are consistent with previous literature,
except for the noted discrepancy at the end of Section 6.3.1.

6.3.1 Approximate intervals
We illustrate the coverage probabilities of the Katz log, adjusted log, inverse hyperbolic sine and
Koopman asymptotic score intervals in Figure 4. The Katz log interval is usually quite conservative.
It improves with increasing sample size, but its coverage probabilities are almost always further from
the nominal level than those of the other three intervals. The adjusted log interval is slightly less
conservative, but it can have coverage probabilities markedly below the nominal level for
unproblematic parameter values – values for which other intervals perform quite well. The
inverse hyperbolic sine interval has coverage probabilities fairly close to the nominal level when
the minimal of the two proportions is above a certain value. This value seems to be about 0.15–0.25
for small sample sizes, such as n1+¼ n2+¼ 10, and decreases rapidly for increasing sample size. For
proportions below this value, the coverage probability of the inverse sinh interval can be very low.
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The Koopman asymptotic score interval performs almost always better than the other intervals, and
it works quite well even for small sample sizes.

All four intervals in Figure 4 are negatively affected by unequal sample size; particularly, the
inverse sinh interval, which has coverage probabilities close to the nominal level only for a narrow
range of parameter values. The Katz log and Koopman asymptotic score intervals are affected the
least, but the Koopman interval can have coverage probabilities below the nominal level for small
proportions.

Price and Bonett38 consider several large sample intervals for the ratio of proportions,
including the Katz log, adjusted log, inverse hyperbolic sine and Koopman asymptotic score
intervals. The authors find that the Koopman interval is clearly superior to the other intervals.
They also find that the Katz log interval has coverage probabilities far below the nominal level,
even for moderately large sample sizes. That result is not replicated in our calculations, where
the Katz log interval is usually quite conservative. This difference may be due to different ways
of dealing with incomputable limits. As noted in Section 3, we explicitly set the confidence limits
to (0, 1) when an interval has incomputable limits. If, instead, we ignore those cases from the
calculations of coverage probability, we get results consistent with the findings in Price and
Bonett.38

6.3.2 Exact intervals
We compare the coverage probabilities of the two exact unconditional intervals, Chan–Zhang and
Agresti–Min, in Figure 5. For equal sample sizes, the Agresti–Min interval is superior to the Chan–
Zhang interval (left panel). This holds for most values of � and for both small and moderate sample
sizes, however, the difference in coverage probabilities between the two intervals decreases with
increasing sample size. For small sample sizes, the Chan–Zhang interval is usually quite
conservative.

When sample sizes are unequal, both intervals can be negatively affected. The coverage
probabilities depend heavily on the particular combination of sample sizes and the value of �.
Sometimes, as illustrated in the right panel of Figure 5, the Chan–Zhang and Agresti–Min

Figure 4. Coverage probabilities of the Katz log, adjusted log, inverse hyperbolic sine and Koopman asymptotic

score intervals for sample sizes n1+¼ n2+¼ 10 (left) and n1+¼ n2+¼ 40 (right).

Note: The ratio of proportions is fixed at 2.0.
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intervals perform almost equally, here with mean coverage probabilities equal to 98.8% and 98.9%,
respectively. For the same sample size but with �¼ 3.0 instead of �¼ 2.0, the Agresti–Min interval
performs much better with a mean coverage probability of 96.2%, whereas the Chan–Zhang interval
is even more conservative with a mean coverage probability of 99.4%. If we change the sample sizes,
for instance to n1+¼ 13, n2+¼ 7 or to n1+¼ 12, n2+¼ 8, different patterns of coverage probabilities
emerge. As a rule, however, the Agresti–Min interval has coverage probabilities closer to the
nominal level than does the Chan–Zhang interval.

We refer to Section 4.3.2 for a discussion on the non-consistency of intervals based on inverting
one two-sided test – such as the Agresti–Min interval – and the results of one-sided tests.

6.3.3 The best performing approximate and exact intervals
The two best performing intervals for the ratio of proportions are the Koopman asymptotic score
and the Agresti–Min exact unconditional intervals. A direct comparison of the two intervals for two
situations with small and unequal sample sizes is shown in Figure 6. The coverage probability of the
Koopman interval is generally closer to the nominal level than that of the Agresti–Min interval;
however, the Koopman interval can be quite liberal for combinations of unequal sample sizes and
small proportions.

6.3.4 Example: data from Table 2
For the data in Table 2, the estimate of the ratio of proportions is �̂ ¼ ð7=34Þ = ð1=34Þ ¼ 7:0. Table 5
shows the results of calculating the six confidence intervals considered in Section 6.2 using the
observations in Table 2. In contrast to most of the intervals for the difference between
proportions, these intervals differ markedly. The adjusted log interval is not to be trusted as this
interval can have coverage probabilities well below the nominal level. The Koopman asymptotic
score interval always perform well and has shorter length than the Katz log interval. The inverse
hyperbolic sine interval is similar to the Koopman interval. Both exact unconditional intervals are
clearly quite conservative, particularly the Chan–Zhang interval, which is considerably wider than
the Koopman interval.

.
,

Figure 5. Coverage probabilities of the Chan–Zhang and Agresti–Min exact unconditional intervals for sample sizes

n1+¼ n2+¼ 10 (left) and n1+¼ 15, n2+¼ 5 (right).

Note: The ratio of proportions is fixed at 2.5 (left) and 2.0 (right).
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7 The OR

7.1 Introduction and estimate
The odds of an event is the probability that the event occurs divided by the probability that it does
not occur. The odds of success in group 1 is p1/(1� p1), and in group 2, it is p2/(1� p2). The ratio of
the two odds is called the OR and is denoted by

� ¼
p1=ð1� p1Þ

p2=ð1� p2Þ
:

The OR is the natural measure of effect in case–control studies. It also plays an important role in
logistic regression, where the relationship between the OR and a regression coefficient (b) is
y¼ exp(b). Due to its mathematical properties, the OR is commonly used as a summary measure
in meta-analysis.43

Table 5. Confidence intervals for the ratio of proportions using data from Table 2.

Confidence interval

Lower Upper Lengtha

Katz log 0.91 54 4.08

Adjusted log 0.92 27 3.38

Inverse sinh 1.17 42 3.58

Koopman asymptotic score 1.21 43 3.57

Chan–Zhang 1.22 181 5.00

Agresti–Min 1.15 89 4.35

aLength ¼ log(upper) � log(lower).

Note: The estimate is �̂ ¼ 7:0.

Figure 6. Coverage probabilities of the two best performing confidence intervals for the ratio of proportions.
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As for the difference between proportions and the ratio of proportions, we estimate the OR using
the sample proportions

�̂ ¼
n11=n12
n21=n22

¼
n11n22
n12n21

: ð34Þ

7.2 Confidence intervals

7.2.1 Woolf logit
A confidence interval based on the approximate normal distribution of logð�̂Þ was first proposed by
Woolf44 and is often referred to as the logit interval. By the delta method, we obtain a confidence
interval for y by exponentiating the endpoints of

log �̂ � z�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n11
þ

1

n12
þ

1

n21
þ

1

n22

r
: ð35Þ

If one of the cell counts is zero, the standard error will be infinite and the confidence interval
uninformative.

7.2.2 Gart adjusted logit
Gart45 suggested an adjustment to the logit interval by adding 0.5 to all cell counts. The resulting
confidence interval for y is obtained by exponentiating the endpoints of

log ~� � z�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

~n11
þ

1

~n12
þ

1

~n21
þ

1

~n22

r
, ð36Þ

where

~� ¼
~n11 ~n22
~n12 ~n21

, ~n11 ¼ n11 þ 0:5, ~n12 ¼ n12 þ 0:5, ~n21 ¼ n21 þ 0:5, ~n22 ¼ n22 þ 0:5:

This interval can be computed also when one or more cell counts are zero, however, it will, in some
cases, exclude the estimate of the OR given by Equation (34). If n11¼ 0 and n21 6¼ 0, the estimate is
�̂ ¼ 0, but the lower endpoint is L> 0. If n11¼ n1+ and n21 6¼ n2+, or if n11 6¼ 0 and n21¼ 0, the
estimate is �̂ ¼ 1, but the upper endpoint is finite.

The adjusted logit interval is sometimes referred to as the Haldane–Anscombe correction.

7.2.3 Independence-smoothed logit
The above adjustment, Equation (36), is a special case of a general class of adjustments. Suppose
that we add a non–negative quantity c to each cell count and proceed as above. For c¼ 0, we obtain
the Woolf logit interval, and for c¼ 0.5, the Gart adjusted logit interval. Agresti46 suggests
individual values for each cell based on the observed data:

cij ¼ 2niþnþj=N
2, i, j ¼ 1, 2:

The resulting confidence interval is called the independence-smoothed logit interval. It excludes the
estimate of the OR for the same situations, as described in Section 7.2.2.
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7.2.4 Cornfield exact conditional
In Sections 4.2.5 and 6.2.5, we developed exact unconditional confidence intervals for the difference
between proportions and the ratio of proportions. These methods coped with the nuisance
parameter p1 by maximizing the p-value over the range of p1. Another approach to eliminate the
nuisance parameter is to condition on a sufficient statistic for it. Methods based on the conditional
approach has the benefit that they are much simpler and computationally easier than unconditional
methods. Like their unconditional counterparts, exact conditional intervals are guaranteed to have
at least nominal coverage probabilities. Conditional confidence intervals can be constructed for the
OR but not for the difference between proportions nor the ratio of proportions (Agresti23, p.101).

If we condition on the number of successes (n+1) and the number of failures (n+2), such that all
marginal totals in Table 1 are fixed, the probability of observing a table with x11 successes follows
the non-central hypergeometric distribution

f ðx11j�Þ ¼

n1þ
x11

� �
n2þ

nþ1 � x11

� �
�x11

Xnmin

i¼nmax

n1þ
i

� �
n2þ

nþ1 � i

� �
�i
,

where nmax¼max(0, n+1� n2+) and nmin¼min(n1+, n+1).

Cornfield47 constructs an exact conditional confidence interval (L, U) for y by inverting two one-
sided exact conditional tests (the tail method). L and U can be obtained by solving the following
equations iteratively Xnmin

x11¼n11

f ðx11jLÞ ¼ �=2 ð37Þ

and Xn11
x11¼nmax

f ðx11jUÞ ¼ �=2: ð38Þ

The Cornfield exact interval is always consistent with the Fisher–Irwin exact test.47

Cornfield also proposed an asymptotic approximation to the exact conditional interval. It was
originally presented with a continuity correction and performs quite similarly to the exact
interval.46,48 Miettinen and Nurminen13 suggested an interval that is equal to the approximate
Cornfield interval without the continuity correction. Cornfield’s unadjusted interval is supported in
Stata, whereas the adjusted interval is unsupported in the most common statistical software packages.

7.2.5 Baptista-Pike exact conditional
Baptista and Pike49 use the method by Sterne50 and invert a two-sided test with acceptance region
formed by ordered null probabilities. We solve the following equations instead of (37) and (38):Xnmin

x11¼nmax

f ðx11jLÞ � I
�
f ðx11jLÞ � f ðn11jLÞ



¼ � ð39Þ

and Xnmin

x11¼nmax

f ðx11jUÞ � I
�
f ðx11jUÞ � f ðn11jUÞ



¼ �, ð40Þ
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such that L<U. I is an indicator function, and nmax, nmin and f are as defined in Section 7.2.4. The
interval given by (L, U) is an exact conditional confidence interval for the OR.

7.2.6 Quasi-exact intervals (mid-p)
The mid-p approach, first proposed by Lancaster,51 is a general approach for statistical inference
that has been applied in a wide range of settings, particularly for small sample and sparse data
(Hirji10, pp.50–51 and 218–219). The mid-p concept has mostly been used in relation to significance
testing – the Fisher’s – exact mid-p test is one of the recommended tests for association in 2 � 2
tables in Lydersen et al.2 - however, it can also be used for confidence interval estimation.52

To calculate a mid-p value, we subtract half the point probability of the observed table from the
ordinary p-value. Contrary to an exact test, a mid-p test is not guaranteed to have type I error
probabilities below the nominal level. In a similar manner, a mid-p interval is not guaranteed to have
at least nominal coverage probabilities. For both tests and intervals, however, the nominal level is
seldom violated, and when that happens, the degree of infringement is usually low.53,54

Because mid-p inference is based on exact distributions but without the guarantee to maintain the
nominal level, mid-p tests and intervals are often called quasi-exact.55

A mid-p confidence interval for y based on the Cornfield exact conditional interval is obtained by
making the following adjustments to Equations (37) and (38):

Xnmin

x11¼n11

f ðx11jLÞ �
1

2
f ðn11jLÞ ¼ �=2 ð41Þ

and

Xn11
x11¼nmax

f ðx11jUÞ �
1

2
f ðn11jUÞ ¼ �=2: ð42Þ

To obtain the Baptista–Pike mid-p confidence interval, we substitute Equations (39) and (40) with

Xnmin

x11¼nmax

f ðx11jLÞ � I
�
f ðx11jLÞ � f ðn11jLÞ



�
1

2
f ðn11jLÞ ¼ � ð43Þ

and

Xnmin

x11¼nmax

f ðx11jUÞ � I
�
f ðx11jUÞ � f ðn11jUÞ



�
1

2
f ðn11jUÞ ¼ �: ð44Þ

7.2.7 Agresti–Min exact unconditional
Agresti and Min56 consider exact unconditional intervals for the OR, and in particular, an interval
based on inverting one two-sided exact unconditional score test. The approach is similar to the
Agresti–Min exact unconditional intervals for the difference of proportions (Section 4.2.5) and the
ratio of proportions (Section 6.2.5). For a given value y0, we have the constraint y0¼ p1(1� p2)/
p2(1� p1). The score test statistic for the OR is56

Tðnj�0Þ ¼


n1þðp̂1 � ~p1Þ

�2� 1

n1þ ~p1ð1� ~p1Þ
þ

1

n2þ ~p2ð1� ~p2Þ

�
, ð45Þ
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where n denotes the observed table, and ~p1 and ~p2 the maximum likelihood estimates of p1 and p2.
We refer to Miettinen and Nurminen13 for closed-form expressions of ~p1 and ~p2. Let x¼ {x11, x12,
x21, x22} denote any 2 � 2 table that might be observed given the fixed row sums. The probability of
observing x is the product of the likelihoods for the number of successes in the two samples:

f ðxj p1, �0Þ ¼
x1þ
x11

� �
px11
1 ð1� p1Þ

x12 �
x2þ
x21

� �

p1=ð p1 þ �0 � p1�0Þ

�x21
1� p1=ð p1 þ �0 � p1�0Þ
�x22 :

Define

R
�
TðnÞj p1, �0

�
¼

X
jTðxÞj�jTðnÞj

f ðxj p1, �0Þ,

and eliminate the nuisance parameter p1 by maximizing over all possible values:

R
�
TðnÞj�0

�
¼ sup

p1

R
�
TðnÞj p1, �0

�
:

The range of p1 may be reduced with the Berger and Boos procedure (Section 4.2.5). The Agresti–
Min confidence interval (L, U) for y is the solution of

R
�
TðnÞjL

�
¼ � ð46Þ

and

R
�
TðnÞjU

�
¼ �, ð47Þ

such that R(T(n)Wy0)< a when y0<L and R(T(n)Wy0)< a when y0>U.

7.3 Comparisons of intervals

The comparisons in this section are based on several exact calculations of coverage probabilities
(Section 3). The figures present illustrative cases and are used to initiate the discussion on differences
and similarities between the intervals. Unreferenced statements on interval performance are based
on our calculations, which are consistent with previous published literature.

7.3.1 Approximate intervals
Figure 7 presents typical coverage probabilities of the Woolf logit, Gart adjusted logit and
independence-smoothed logit intervals for one small sample size and one medium sample size.
The three logit intervals perform similarly. For small sample sizes, such as 10 subjects in each
sample (left panel of Figure 7), the Gart adjusted logit interval is slightly less conservative
compared with the other two intervals. All three intervals are conservative for small and large
proportions.

None of the intervals are particularly affected by unbalanced sample size. For instance, when
n1+¼ 40 and n2+¼ 20 (results not shown), all three intervals have similar coverage probabilities to
the ones seen in the right panel of Figure 7.

With increasing OR, the performances of the three logit intervals diverge (Figure 8). The Gart
adjusted logit interval can have coverage probabilities lower than the nominal level, starting at about
y¼ 8. This problem increases with increasing OR, and when log(y)> 4, the coverage probability of
the Gart interval can be very low.46
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The independence-smoothed logit interval performs well in nearly all cases, while the Woolf logit
interval is slightly more conservative. Even though Figures 7 and 8 do not show it, both the Woolf
logit and the independence-smoothed logit intervals can have coverage probabilities below the
nominal level. This happens rarely, particularly for the independence-smoothed logit interval.

The Gart logit interval is slightly shorter than the independence-smoothed logit interval.46

7.3.2 Exact and quasi-exact intervals
We present typical coverage probabilities for exact and quasi-exact intervals for the OR in Figure 9.
For small sample sizes, the Cornfield exact conditional interval is very conservative, and it does not
improve much with increasing sample size; it is still quite conservative with 75 subjects in each

Figure 7. Coverage probabilities of the Woolf logit, Gart adjusted logit and independence-smoothed logit intervals

for sample sizes n1+¼ n2+¼ 10 (left) and n1+¼ n2+¼ 30 (right).

Note: The OR is fixed at 3.0 (left) and 2.0 (right).

Figure 8. Coverage probabilities of the Woolf logit, Gart adjusted logit and independence-smoothed logit intervals

for sample sizes n1+¼ n2+¼ 10 (left) and n1+¼ n2+¼ 30 (right).

Note: The OR is fixed at 20.0 (left) and 10.0 (right).
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sample (results not shown). The Baptista–Pike exact conditional interval improves upon the
Cornfield exact interval, but it is also quite conservative, particularly for small sample sizes. The
mid-p intervals have coverage probabilities closer to the nominal level than their exact counterparts.
The Baptista–Pike mid-p interval can have coverage probabilities below the nominal level but
usually not by much. All four intervals cope well with unequal sample sizes.

For increasing ORs, the Baptista–Pike mid-p interval performs very well, especially when y� 10
and there are 30 or more in each sample.

The Agresti–Min exact unconditional interval is clearly the superior exact interval. It is far less
conservative than the Cornfield and Baptista–Pike exact conditional intervals. In Figure 9, the
Agresti-Min interval performs quite similarly to the Baptista–Pike mid-p interval. In general,
when y< 5 and n1+¼ n2+, the Baptista–Pike mid-p interval has coverage probabilities slightly
closer to the nominal level than the Agresti–Min interval, but not by much. If, however, the
sample size is unbalanced or y� 5, the Baptista–Pike mid-p interval will outperform the Agresti–
Min interval (results not shown here).

Except for the Cornfield exact conditional interval, none of the intervals mentioned in this section
are widely available in software packages or particularly easy to calculate.

7.3.3 The best performing approximate and exact intervals
Figure 10 is a head-to-head comparison of the four best performing intervals for the OR. If we
accept coverage probabilities slightly below the nominal level, the Baptista–Pike mid-p interval is
clearly superior to the logit intervals. This result persists for other combinations of sample sizes and
y-values. As discussed in Section 7.3.2, the Baptista–Pike mid-p interval usually performs somewhat
better than the Agresti–Min exact unconditional interval. This is not obvious in the left panel of
Figure 10, but can be seen in the right panel of Figure 10.

7.3.4 Example: data from Table 2
The OR was the measure of effect used in Perondi et al.3 As mentioned in Section 2, the estimated
OR for death with the high-dose therapy is 8.6. The authors used the Cornfield exact conditional

.

Figure 9. Coverage probabilities of the Cornfield exact conditional, Baptista–Pike exact conditional, Cornfield mid-

p, Baptista–Pike mid-p and Agresti–Min exact unconditional intervals for sample sizes n1+¼ n2+¼ 10 (left) and

n1+¼ n2+¼ 30 (right).

Note: The OR is fixed at 3.0 (left) and 2.0 (right).
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interval and presented a 95% confidence interval from 1.0 to 397.0. This interval is very wide, as are
the Cornfield mid-p and Baptista–Pike exact conditional intervals (Table 6). The Baptista–Pike mid-
p interval has equal length to the Woolf logit interval, but the endpoints are not equal; the Woolf
interval contains the null value (y¼ 1), whereas the Baptista–Pike mid-p interval does not. A similar
situation is seen with the independence-smoothed logit and the Agresti–Min exact unconditional
intervals. The shortest interval is the Gart adjusted logit, which also includes the null value. The logit
intervals thus have short lengths but are conservative, particularly for small and large proportions
(Figure 7). For this example, the Baptista–Pike mid-p and the Agresti–Min exact unconditional
intervals are the only intervals for the OR that are consistent with the Koopman asymptotic score
interval for the ratio of proportions and the Newcombe hybrid score interval for the difference
between proportions.

Figure 10. Coverage probabilities of the four best performing confidence intervals for the OR.

Table 6. Confidence intervals for the OR using data from Table 2.

Confidence interval

Lower Upper Lengtha

Woolf logit 0.99 74 4.31

Gart adjusted logit 0.98 38 3.65

Independence-smoothed logit 0.99 60 4.11

Cornfield exact conditional 0.97 397 6.01

Cornfield mid-p 1.19 200 5.12

Baptista–Pike exact conditional 1.00 195 5.28

Baptista–Pike mid-p 1.33 99 4.31

Agresti–Min exact unconditional 1.19 72 4.10

aLength ¼ log(upper) � log(lower).

Note: The estimate is �̂ ¼ 8:6.
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8 Recommendations

We present a summary of recommended confidence intervals in Table 7. These are our prime
choices, but they are not the only intervals we consider appropriate. A more detailed picture is
given in Sections 8.1–8.4. Our recommended confidence intervals comply with the following criteria.
The coverage probability is close to the nominal level for a wide range of parameter values. It is
allowed, occasionally, to dip below the nominal level, as long as the infringement is small. For
intervals with similar coverage probabilities, we prefer the interval with shortest length. With one
exception, all intervals we recommend are either easy to calculate – usually meaning that it has a
relatively simple closed-form expression – or readily available in one or more standard software
packages (Table 8).

8.1 The difference between proportions

For small sample sizes (less than 30 in each sample), the Newcombe hybrid score interval
performs well but can be somewhat liberal. It is easy to calculate and also available in several
software packages (Table 8). The Agresti–Caffo interval is slightly more conservative but even
easier to calculate than the Newcombe hybrid score interval. The Miettinen–Nurminen asymptotic
score interval performs well in several situations, but it requires iterative calculations and is
not widely available in software packages. The Agresti–Min exact unconditional interval is
usually more conservative than the Newcombe hybrid score interval; however, it has better
coverage probability when proportions are close to 0 or 1 and avoids coverage probabilities
below the nominal level. The Agresti–Min interval is therefore our prime recommendation for
small sample sizes; however, both the Newcombe and Agresti–Caffo intervals are good
alternatives. The widely available Wald interval, with or without continuity correction, is not
recommended.

For moderate and large sample sizes (more than 30 in each sample), the Agresti–Caffo,
Newcombe hybrid score and Miettinen–Nurminen asymptotic score intervals perform similarly
and all have coverage probabilities close to the nominal level. We prefer the Newcombe hybrid
score interval, as it copes slightly better with proportions close to 0 or 1 than do the other intervals.
Nevertheless, all three intervals are quite safe to use. The Wald interval has coverage probabilities
close to the nominal level for 100 or more in each sample.

If the coverage probability must be at least the nominal size, we recommend the Agresti–Min
exact unconditional interval.

Table 7. Summary of the recommended confidence intervals

Measure Small samples Moderate and large samples

Difference between

proportions

Agresti–Min exact unconditional Newcombe hybrid score

NNT The reciprocal of the above confidence interval limits for difference between

proportions + Altman’s notation

Ratio of proportions Koopman asymptotic score Koopman asymptotic score

OR Baptista–Pike mid-pa Baptista–Pike mid-pa

aNot available in standard software packages. We refer to Section 8.4 for available alternatives.

Note: Other appropriate intervals are considered in Sections 8.1–8.4, which also details what constitutes small and large sample

sizes.
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Table 8. Availability of confidence intervals in standard software packages

Confidence interval

Closed

forma CIA 2.1 R 2.12 SAS 9.2 SPSS 18 Stata 11 StatXact 9

Difference between proportions

Approximate intervals

Wald ˇ ˇ ˇ ˇ ˇb ˇ –

Wald with continuity correction ˇ – ˇ ˇ – – –

Agresti–Caffo (3) ˇ – ˇc – – ˇd –

Newcombe hybrid score (2) ˇ ˇ ˇc ˇ – ˇd –

Miettinen–Nurminen asymptotic score – – ˇe – – ˇd ˇ
Exact intervals

Santner–Snell exact unconditional – – – ˇ – – ˇ
Chan–Zhang exact unconditional – – – – – – ˇ

Agresti-Min exact unconditional (1) – – – – – – ˇ
Ratio of proportions

Approximate intervals

Katz log ˇ ˇ – ˇ ˇ ˇ –

Adjusted log ˇ – ˇc – – – –

Inverse hyperbolic sine ˇ – – – – – –

Koopman asymptotic score (1) – – ˇc,e – – ˇf ˇ
Exact intervals

Chan–Zhang exact unconditional – – – – – – ˇ

Agresti–Min exact unconditional (2) – – – – – – ˇ
OR

Approximate intervals

Woolf logit ˇ ˇ – ˇ ˇ ˇ ˇ
Gart adjusted logit (3) ˇ – ˇc – – ˇg –

Independent-smoothed logit (4) ˇ – – – – ˇg –

Cornfield mid-p – – – – – – –

Baptista–Pike mid-p (1) – – – – – – –

Exact intervals

Cornfield exact conditional – – ˇ ˇ – ˇ ˇ
Baptista–Pike exact conditional – – – – – – –

Agresti–Min exact unconditional (2) – – – – – – –

a Intervals with closed-form expressions can be calculated manually;
b Available with the Complex Samples module;
c Available with the pairwiseCI package;
d Available with the package rdci;
e Available with the PropCIs package;
f Available with the package sg154;
g Available with the package sbe30.

Note: Recommended intervals are typed in bold style with their preferred order in parentheses. Some of the packages also calculate

other intervals than the ones listed here. Exact intervals are guaranteed to have coverage probability at least the nominal size.
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8.2 The NNT

The computation of a confidence interval for the NNT is based on a confidence interval for the
associated difference between proportions. One of the recommended intervals in Section 8.1 should
be used for this purpose. We further recommend that the notation by Altman32 is used, particularly
when the interval for the difference between proportions contains zero.

8.3 The ratio of proportions

For both small and large sample sizes, the Koopman asymptotic score interval performs generally well.
The Agresti–Min exact unconditional interval also performs well, except for some cases with unequal
sample sizes, where it can be quite conservative. The Koopman interval has almost always coverage
probabilities closer to the nominal level than does the Agresti–Min interval; however, it can be quite
liberal forunequal sample sizes andsmall proportions.Basedon themanysituationswhere theKoopman
interval has coverage probability close to the nominal level, we recommend theKoopman interval ahead
of the Agresti–Min interval. The Agresti–Min interval is a safe but conservative choice, and we
recommended it when the coverage probability needs to be at least the nominal level.

For 40 subjects or more in each sample, the inverse hyperbolic sine interval performs well when
proportions are greater than 0.1. It is easy to calculate and can be a good alternative to the Koopman
interval, which needs to be computed iteratively. We do not recommend the widely available Katz log
interval nor the adjusted log interval, unless the sample size is at least 75 in each sample.

8.4 The OR

For small sample sizes, the three logit intervals – due to Gart, Woolf and Agresti – can be rather
conservative with Gart as the least and Woolf as the most conservative. When the sample size
increases, the performances of the three logit intervals become similar and their coverage
probabilities get closer to the nominal level. Still, all three intervals are conservative when
proportions are close to 0 or 1. The Gart interval is slightly better than the other two intervals.

The quasi-exact Baptista–Pike mid-p interval performs well for most sample sizes and
proportions. It can be slightly liberal but has coverage probabilities closer to the nominal level
than do the logit intervals. The Agresti–Min exact unconditional interval performs almost as well
as the Baptista–Pike mid-p interval, but it is even more complex to calculate. We thus recommend
the Baptista–Pike mid-p interval ahead of the Agresti–Min exact unconditional interval for all
sample sizes. If neither of these intervals are available – they are not supported by any standard
software package – or the sample size is too large to compute them, we recommend the Gart
adjusted logit interval, as long as the OR is not too far from one (y¼ 10 or y¼ 0.1 should be no
problem). The independence-smoothed logit interval is also a good alternative.

If it is necessary to use a confidence interval that is guaranteed to have at least the nominal coverage
probability, the only widely available exact interval is the Cornfield exact conditional interval. It can,
however, be extremely conservative, so we recommend it only if no other options are available. The
Baptista–Pike exact conditional and the Agresti–Min exact unconditional intervals both outperform
the Cornfield interval, but neither are available in any standard software package.
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