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SUMMARY

Prompted by several recent papers on the inference on median and mean residual life time, we
note that the testing involving the mean or median residual life function in censored survival
data can be obtained by an easy application of the general empirical likelihood ratio test. This
approach has several advantages: (1) there is no need to estimate the variance/covariance
at all, which may become prohibitively complicated for other procedures that require the
estimation of such. (2) When inverting the tests to obtain confidence regions/intervals,
this procedure inherits all the good properties of a likelihood ratio test. (3) Free software
implementation of the test is readily available.
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1. INTRODUCTION

Jeong et al. (2008) [1] recently proposed a score-type test for the median residual life time.

They argue that “the need for such estimates is becoming more critical in breast cancer

research as long-term courses of secondary therapies are now being considered for patients

who remain recurrence free after several years of initial treatment”. Using the concept of

the median residual lifetimes in statistical inference would also help patients and physicians

understand the efficacy of a new drug in a more intuitively straightforward way than using

the traditional tools based on such as the hazard function or probability of survival.

Despite the practical usefulness of the median residual life function, however, it is well

known that the inference on the median residual life function in survival data can be pro-

hibitively challenging because it involves nonparametric estimation of the density function of
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the unknown failure time distribution under censoring. Therefore, Jeong et al. [1] considered

a method directly dealing with an estimating equation to avoid estimation of the density

function, like in the Berger et al. [2], proposing a score-type (possibly stratified) test to

compare median residual lifetimes between two or more groups. But their procedure still

involves estimation of the variance of score function to evaluate the test statistic through the

martingale theory. In this paper, we note that an even simpler procedure is available via the

empirical likelihood ratio test for censored survival data, which does not require estimation

of any variance at all. The empirical likelihood approach also inherits all the good properties

of a likelihood ratio test and can handle more general types of censored data.

There are also a couple of recent papers dealing with the mean residual life function using

the empirical likelihood approach [3,4]. Qin and Zhao [4], however, proposed a different

approach using an estimating function that involves nuisance parameters. The version of

empirical likelihood they proposed does not have a regular chi-squared limiting distribution

under null hypothesis, unlike ours.

In Section 2, the median residual life function is defined and an empirical likelihood ratio

test is proposed. In Section 3, the similar procedure applies to the mean residual life function.

In Section 4, an existing statistical software that can facilitate the empirical likelihood ratio-

based inference is briefly introduced. In Section 5, performance of the proposed empirical

likelihood ratio test for the median residual life function is compared with the score-type test

proposed by Jeong et al. [1] through a simulation study. In Section 6, the proposed method

is illustrated with two real data examples. In Section 7, we conclude with a brief remark.

2. MEDIAN RESIDUAL LIFE

In survival data, the median residual lifetime at time x is defined as the median of the

distribution of failure times conditional on the event that subjects survive beyond time x,

i.e. P (T − x > θ|T > x) = 0.5, where θ is the median of the remaining lifetimes at time x.

Therefore the median residual lifetime is quantitatively defined as the number θ that solves

the equation
1− F (x + θ)

1− F (x)
= 0.5,

where F (·) is the cumulative distribution function of failure times. Other quantiles of the

residual life distribution can be defined similarly. Even though we shall focus on developing
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the test for the median residual life function in the sequel, it can be easily modified to test

any quantile residual life function.

Let us denote the median residual lifetime at time x as Med(x). Clearly θ = Med(x) is

also the solution to

1− F (x + θ) = 0.5{1− F (x)} .

After rearranging the terms, we see that θ is the solution to

0.5 = F (x + θ)− 0.5F (x) .

If we define a function gb(t) as

gb(t) = I[t≤(x+b)] − 0.5I[t≤x] − 0.5, (1)

then the hypothesis H0 : Med(x) = b can be tested by testing

H0 :
∫ ∞

0
gb(t)dF (t) = 0 .

This, in turn, can be accomplished by an empirical likelihood ratio test.

2.1 Empirical Likelihood Ratio Test

The empirical likelihood ratio tests, first proposed by Thomas and Grunkemeier [5] and

Owen [6], attracted much attention since then. The empirical likelihood methods developed

in the last 20 years has emerged as a very competitive nonparametric test procedure for

quite general settings, including the test of a parameter defined by
∫

g(t)dF (t) with censored

survival data. It parallels the theory of the parametric likelihood ratio test, except the

parametric likelihood is replaced by a nonparametric one. The book of Owen [7] summarized

many of the results (Chapter 6 in particular). Other relevant papers include Murphy and van

der Vaart [8], Pan and Zhou [9], and Zhou [10]. The following is an adaptation/summary of

the relevant results from above sources suitable for our applications.

Suppose Ti, i = 1, 2, · · · , n, are independent and identically distributed (iid) event times

of interest with a distribution F (t). Due to censoring, we only observe a censored sample

Yi = min(Ti, Ci) and δi = I(Ti ≤ Ci) is an indicator function. We assume the censoring time

Ci is independent of the event time Ti.
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Let pi denote the probability mass put on observation Yi, then the empirical likelihood

(EL) for the above censored data is defined as

EL =
n∏

i=1

{pi}δi{
∑

Yj>Yi

pj}1−δi . (2)

The maximization of the above EL with respect to pi, subject to pi ≥ 0 and
∑

pi = 1,

is well known to be achieved by (the jumps of) the Kaplan-Meier estimator computed from

(Yi, δi) (Owen [7], pg 142). Let us denote the maximum empirical likelihood value achieved

as EL(KM).

In order to form the likelihood ratio, we also need to maximize the above EL with respect

to pi under an extra constraint (the H0)

n∑
i=1

g(Yi)pi = θ, (3)

where g(t) is a given function such that 0 < Var g(T ) < ∞ and θ is the value we wish to test.

The variance of the quantity
∑

g(Yi)wi with wi being the jumps of the Kaplan-Meier

estimator, may not always have a finite asymptotic variance. We need the following extra

condition to guarantee this variance is finite:∫
g2(t)

1−G(t−)
dF (t) < ∞ , (4)

where G(·) is the distribution function of the censoring variable Ci.

The Empirical Likelihood Theorem asserts that under the null hypothesis, H0 : θ = Eg(T ),

-2 log empirical likelihood ratio has an asymptotic chi-squared distribution. The proof of the

following theorem is provided in the APPENDIX A.

Theorem Consider the right censored data and its empirical likelihood defined above.

Suppose Eg(T ) = θ. Assume also that condition (4) holds. Then we have

W (θ) = −2 log
max EL

EL(KM)
D−→ χ2

1 as n →∞,

where the numerator max is carried out over all probabilities pi that satisfy (3).

Testing the equality (or the ratio) of two median residual times from two samples (or

from one sample at two different times) can be carried out similarly as outlined in Jeong et

al. [1].
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If we are to test H0 : Med1(x1)/Med2(x2) = c, where Medk(xk) (k = 1, 2) denote

the median residual time from sample k at time xk, we shall first obtain two empirical

likelihood ratio statistics for testing the two auxiliary hypotheses: H01 : Med1(x1) = cθ

and H02 : Med2(x2) = θ. Let us denote the two resulting test statistics by W1(cθ;x1) and

W2(θ;x2). Note that the vaule of c will be fixed once the alternative hypothesis is specified.

Then the original hypothesis H0 : Med1(x1)/Med2(x2) = c can be tested by using the

statistic W = infθ{W1(cθ;x1) + W2(θ;x2)}, which follows a chi-square distribution with 1

degree of freedom under H0 : c = 1 [1]. Note that a special case of the null hypothesis

gives H0 : Med1(x)/Med2(x) = c, which will be considered on our simulation study and real

examples as in Jeong et al. (2008). Another special case may be to test the ratio of two

median residual lifetimes from the same sample but at two different times x1 and x2, i.e.

H0 : Med(x1)/Med(x2) = c. The inference procedure will be similar to the above, except we

need to replace the two auxiliary hypotheses by H00 : Med(x1) = cθ, Med(x2) = θ.

Specifically to evaluate the test statistic under the null hypothesis of equivalence of two

median residual lifetimes at a fixed time point (t0), first c needs to be fixed as 1. Then for

all the possible support values of θ (recall that θ is also a time point), evaluate Wk(θ; t0) in

each group by using the R function el.cen.EM2, denoting them by W1(θ; t0) and W2(θ; t0),

respectively. Now our observed two-sample statistic will be the minimum of the function

W = W1(θ; t0)+W2(θ; t0) over θ. Since W follows a χ2 distribution with 1 degree of freedom

(Jeong et al., 2008), the p-value associated with the observed value of the test statistic can

be obtained under the distribution.

For the score-type test, this latter case would be much more involved, since the covariance

between Med(x1) and Med(x2) needs to be estimated. This is even more so when we are

dealing with the mean residual time.

In addition to the advantage of no need for nonparametric estimation of the density

function for the variance calculation, the empirical likelihood ratio inference inherits the nice

properties of a likelihood ratio-based confidence region, i.e. range respecting and transform

invariant.

3. MEAN RESIDUAL LIFE
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The mean residual lifetime of a random variable T , at a given time x, is defined as

M(x) = E(T |T ≥ x)− x =

∫∞
x sdF (s)
1− F (x)

− x =

∫∞
x 1− F (s)ds

1− F (x)
.

For a given x value, we first notice that the hypothesis

H0 : M(x) = µ

is equivalent to the following hypothesis

H0 :

∫∞
x sdF (s)
1− F (x)

= (x + µ) ,

which is also equivalent to

H0 :
∫ ∞

x
sdF (s) = [1− F (x)](x + µ) .

This in turn can be written as (since
∫∞
x dF (s) = 1− F (x))

H0 :
∫ ∞

x
[s− (x + µ)]dF (s) = 0 . (5)

Testing the above hypothesis can be performed by a one-sample empirical likelihood ratio

test for censored survival data, similar to the median case, but with a different definition of

the g-function, i.e. g(s) = [s− (x + µ)]I[s>x].

Testing the ratio of two mean residual times from two independent samples (or from the

same sample but at two different time points) can be done following the same procedure

outlined in Section 2.1.

4. AVAILABLE STATISTICAL PACKAGE

A publicly downloadable software implementation of the empirical likelihood ratio tests with

censored survival data is emplik, which is an extension package to be used with the R software

[12]. In particular, the function el.cen.EM2 inside the package emplik carries out the above

test. A real data example of calculating confidence intervals using the function is described

in the APPENDIX, together with Section 6.

Since the procedure el.cen.EM2( ) can handle doubly censored data as well, the same

test procedure outlined above can test median residual lifetime with doubly censored data.

Left truncated and right censored data can be treated similarly, but another function emplikH2

.test( ) inside the emplik package needs to be used after reformulating the hypothesis in

terms of cumulative hazard.
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5. A SIMULATION STUDY

A simulation study was performed to compare the two-sample testing procedure from Jeong et

al. [1] and one based on the empirical likelihood approach. For both groups simulated, failure

times were generated identically from a Weibull distribution with censoring proportions of

0%, 10%, 20% and 30% similarly as in Jeong et al. [1]. For a fair comparison, the non-

smoothed version of the empirical likelihood ratio test was considered. The proportion of

rejecting the null hypothesis of the equality of the two medians were compared for different

sample sizes at various time points. Table I summarizes the results from 1000 repetitions to

compute 95% coverage probabilities. In general, the results from Jeong et al.’s method tend

to be slightly conservative than ones from the EL approach, especially when the sample size

becomes large.

Table I. Empirical coverage probabilities for the Jeong et al. (2008) and Empirical

Likelihood method.

Jeong et al. (2008) Empirical Likelihood
n t0 0% 10% 20% 30% 0% 10% 20% 30%
50 0 .978 .978 .981 .976 .976 .975 .981 .979
50 1 .980 .979 .981 .976 .978 .979 .979 .976
50 2 .974 .973 .977 .976 .975 .976 .974 .976
50 3 .984 .986 .977 .979 .985 .989 .982 .985
100 0 .971 .970 .971 .977 .969 .969 .967 .972
100 1 .971 .973 .976 .979 .968 .969 .972 .977
100 2 .974 .976 .976 .978 .971 .973 .975 .975
100 3 .979 .981 .981 .982 .975 .976 .981 .981
500 0 .965 .966 .966 .968 .953 .952 .947 .957
500 1 .964 .966 .968 .968 .954 .957 .955 .958
500 2 .969 .969 .967 .970 .962 .961 .956 .960
500 3 .974 .972 .973 .969 .960 .958 .962 .959

6. REAL EXAMPLES

First, we take a data set cancer from the R package survival. It contains 228 survival

times from lung cancer patients with 63 right-censored observations. We shall find the 90%

confidence interval for the mean and median residual lifetimes at year one (365.25 days) i.e.

confidence interval for M(365.25) and Med(365.25).
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When inverting the empirical likelihood ratio tests to get the confidence intervals, it is

often very helpful to know where is the ‘center’ of that confidence interval, i.e. when testing

for this ‘center’ value, one should get a p-value of one. For the empirical likelihood ratio

tests described in the previous sections, the ‘center’ is given by the nonparametric maximum

likelihood estimator based on the Kaplan-Meier estimator.

Detailed steps to evaluate a 90% confidence interval by using the function el.cen.EM2

are illustrated in the APPENDIX B. Following the steps, we find the 90% confidence interval

for the median residual time as [184.75, 321.75]. Notice that, due to the discrete nature of the

quantile function, we do not get an exact p-value of 0.1. Smoothing the indicator function

in (1), however, always enables us to get the exact p-value. Another benefit of smoothing

is (potentially) a more accurate p-value, as indicated by Chen and Hall [11]. If we use the

linear smooth function or the cubic smoother function with a bandwidth of 1/20, we get a

90% confidence interval of [184.74, 321.71] and [184.77, 321.73], respectively. These intervals

are practically very close to one from the non-smoothed approach. They are also very similar

to the confidence interval estimate obtained by the score-type test as [184.75, 321.74].

The second example comes from a breast cancer study (NSABP Protocol B-04) as de-

scribed in Jeong et al. [1]. The data include 586 node positive patients and 1079 node-negative

patients. In this example, we first estimate the median residual lifetimes among node-positive

and node-negative patients separately by using the empirical likelihood approach and then

statistically compare them by using the 95% confidence intervals of the ratio estimated from

both Jeong et al.’s (J) and the empirical likelihood (EL) ratio method. From Table II we see

that the two approaches provided almost identical results for the 95% confidence intervals

for the ratio of the two medians.

Table II. Estimated median residual lifetimes in node-negative and node-positive groups,

the ratios, and 95% confidence intervals for the ratios (NSABP B-04 data).
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Median Residual Lifetime Ratio 95% CI
t0 Node-Negative Node-Positive J EL
0 12.46 (11.2,13.5) 6.87 (6.4,7.4) 0.55 (0.49, 0.63) (0.49, 0.63)
2 12.44 (11.2,13.6) 6.93 (5.9,8.1) 0.56 (0.47, 0.70) (0.47, 0.70)
4 13.05 (11.8,14.8) 8.24 (6.8,10.2) 0.63 (0.49, 0.81) (0.49, 0.81)
6 13.40 (12.5,14.3) 8.75 (7.7,10.6) 0.65 (0.54, 0.81) (0.56, 0.82)
8 12.91 (11.9,13.8) 10.19 (8.8,11.6) 0.79 (0.66, 0.93) (0.67, 0.93)
10 12.48 (11.2,13.7) 9.66 (8.2,11.8) 0.77 (0.62, 1.00) (0.62, 1.00)
12 11.85 (10.6,13.0) 9.66 (7.5,12.6) 0.82 (0.63, 1.08) (0.63, 1.08)

7. A REMARK

In this note, we proposed a method to infer the median or mean residual lifetimes by using

the empirical likelihood ratio approach for censored survival data. A major advantage of

the proposed method is no need for nonparametric estimation of any kind of variance for

statistical inference, especially for the median case. The results from the proposed method

were similar to ones from a score-type test statistic recently proposed, implying that the

empirical likelihood ratio method may be an important alternative, but simpler, method for

inferring median or mean residual lifetimes in censored survival data.

APPENDIX A: Proof of the Theorem

We begin with the hypothesis about median residual time θ,

1− F (x + θ)
1− F (x)

= 0.5.

By applying the product limit formula 1− F (t) =
∏

s≤t{1−∆Λ(s)} in the above, we have∏
s≤x+θ{1−∆Λ(s)}∏

s≤x{1−∆Λ(s)}
= 0.5,

which can be written on a log scale as∑
s≤x+θ

log{1−∆Λ(s)} −
∑
s≤x

log{1−∆Λ(s)} = log(0.5),

which is equivalent to ∑
x<s≤x+θ

log{1−∆Λ(s)} = log(0.5).

A continuous version of the last equation is given by∫
I[x<t≤x+θ] log{1−∆Λ(t)} = log(0.5).
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Defining g(t) = I[x<t≤x+θ], the Theorem in this paper directly follows from Theorem 1

(Bathke, Kim and Zhou, 2008), which was proved in Appendix A of Bathke et al. (2008).

APPENDIX B: Computation of the empirical likelihood ratio statistic in R

Here we describe in detail some of the computations presented in Section 6. First the

packages emplik and survival need to be loaded into R [package survival is only needed

here to supply the data set cancer].

> data(cancer)
> time <- cancer$time
> status <- cancer$status-1
> MMRtime(x=time, d=status, age=365.25)
$MeanResidual
[1] 275.9997

$MedianResidual
[1] 258.75

The following is the result from testing the mean residual times through the confidence

interval approach. First we need to define the g function for the mean residual life.

> mygfun <- function(s, age, muage) {as.numeric(s >= age)*(s-(age+muage))}
> el.cen.EM2(x=time, d=status, fun=mygfun, mu=0, age=365.25, muage=234.49389)$Pval
[1] 0.1000000
> el.cen.EM2(x=time, d=status, fun=mygfun, mu=0, age=365.25, muage=323.1998)$Pval
[1] 0.1

Therefore the 90% confidence interval for mean residual time at 365.25 days is [234.49389,

323.1998].

For testing of the median residual time, we first need to code the gθ function defined in

(1) and then use el.cen.EM2 to test.

> mygfun2 <- function(s, age, Mdage) {as.numeric(s<=(age+Mdage))-0.5*as.numeric(s<=age) -0.5}
> el.cen.EM2(x=time, d=status, fun=mygfun2, mu=0, age=365.25, Mdage=184.75)$Pval
[1] 0.1135797
> el.cen.EM2(x=time, d=status, fun=mygfun2, mu=0, age=365.25, Mdage=321.7499)$Pval
[1] 0.1192006

This implies a 90% confidence interval for the median residual time is [184.75, 321.7499].

Note we do not get an exact p-value of 0.1 here. For the smoothed quantile, first define a

(linearly) smoothed g function, then find the confidence limits.
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> mygfun22 <- function(s, age, Mdage) {
myfun7(s, theta=(age+Mdage), epi=1/20)-0.5*myfun7(s, theta=age, epi=1/20) -0.5 }
> myfun7 <- function(x, theta=0, epi) {
if(epi <= 0) stop("epi must > 0")
u <- (x-theta)/epi
return( pmax(0, pmin(1-u, 1)) ) }
> el.cen.EM2(x=time, d=status, fun=mygfun22, mu=0, age=365.25, Mdage=184.7416765)$Pval
[1] 0.1000000
> el.cen.EM2(x=time, d=status, fun=mygfun22, mu=0, age=365.25, Mdage=321.71153607)$Pval
[1] 0.1000000
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