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1 Introduction

1.1 Introduction

Definition: A failure time (survival time, lifetime), T , is a nonnegative-valued random vari-
able.

For most of the applications, the value of T is the time from a certain event to a failure
event. For example,

a) in a clinical trial, time from start of treatment to a failure event

b) time from birth to death = age at death

c) to study an infectious disease, time from onset of infection to onset of disease

d) to study a genetic disease, time from birth to onset of a disease = onset age

1.2 Definitions

Definition. Cumulative distribution function F (t).

F (t) = Pr(T ≤ t)

Definition. Survial function S(t).

S(t) = Pr(T > t) = 1− Pr(T ≤ t)

Characteristics of S(t):

a) S(t) = 1 if t < 0

b) S(∞) = limt→∞ S(t) = 0

c) S(t) is non-increasing in t

In general, the survival function S(t) provides useful summary information, such as the me-
dian survival time, t-year survival rate, etc.

Definition. Density function f(t).
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a) If T is a discrete random variable,

f(t) = Pr(T = t)

b) If T is (absolutely) continuous, the density function is

f(t) = lim
∆t→0+

Pr (Failure occurring in [t, t + ∆t))

∆t

= Rate of occurrence of failure at t.

Note that

f(t) =
dF (t)

dt
= − dS(t)

dt
.

Definition. Hazard function λ(t).

a) If T is discrete,

λ(t) = P(T = t|T ≥ t) =
P(T = t)

P(T ≥ t)
.

Note that λ(t) = 0 if t is not a “mass point” of T . If T takes values at the mass points
x1 < x2 < x3 . . .. When xj ≤ t < xj+1,

S(t) =
j∏

i=1

(1− λ(xi)),

since

S(t) =
P (T ≥ x2)

P (T ≥ x1)
· P (T ≥ x3)

P (T ≥ x2)
· . . .

P (T ≥ xj+1)

P (T ≥ xj)

= (1− λ(x1)) · (1− λ(x2)) . . . (1− λ(xj))

b) If T is (absolutely) continuous,

λ(t) = lim
∆t→0+

Pr(Failure occurring in [t, t + ∆t)|T ≥ t)

∆t

= Instantaneous failure rate at t given survival up to t
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Here λ(t)∆t ≈ the proportion of individuals experiencing
failure in [t, t + ∆t) to those surviving up to t

example a. Constant hazard λ(t) = λ0

b. Increasing hazard λ(t2) ≥ λ(t1) if t2 ≥ t1
c. Decreasing hazard λ(t2) ≤ λ(t1) if t2 ≥ t1
d. U-shape hazard (human mortality for age at death)

Remark: Modeling the hazard function is one way for parametric modeling.

Definition Cumulative hazard function (chf)Λ(t).

a) If T is discrete, let xi’s be the mass points,

Λ(t) =
∑

xi≤t

λ(xi)

b) If T is (absolutely) continuous,

Λ(t) =
∫ t

0
λ(u)du

and
dΛ(t)

dt
= λ(t)

1.3 Relationship Among Functions

a) If T is discrete,

λ(t) = P(T=t)

P(T≥t)
= f(t)

S(t−)
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b) If T is (absolutely) continuous, S(t) = Pr(T > t) = Pr(T ≥ t),

λ(t) = lim
∆t→0+

P (T ∈ [t, t + ∆t)|T ≥ t)

∆t

= lim
∆t→0+

P (T ∈ [t, t + ∆t))/S(t)

∆t

=
1

S(t)
· lim

∆t→0+

P (T ∈ [t, t + ∆t))

∆t

=
f(t)

S(t)

A well known relationship among the density, hazard and survival functions is

λ(t) = f(t)
S(t)

.

Also,

Λ(t) =
∫ t

0
λ(u)du =

∫ t

0

f(u)

S(u)
du

=
∫ t

0

(− dS(u)
du

)

S(u)
du = [− log S(u)] |t0

= [− log S(t)]− [− log S(0)] = − log S(t)

Thus

S(t) = e−Λ(t) = e−
∫ t

0
λ(u)du .

We now see that λ(·) is determined if and only if f(·) (or S(·)) is determined, and vice
versa.

When T is a continuous variable, we also have

∫∞
0 λ(u)du = ∞

This formula is implied by 0 = S(∞) = e−
∫∞
0

λ(u)du.
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Example. λ(t) = λ0, a positive constant, is a valid hazard function.

Example. λ(t) = λ0 + λ1t, with λ0, λ1 > 0, is a valid hazard function.

Example. λ(t) = e−θt, θ > 0, is NOT a valid hazard function.

Remark: In applications, if a disease has ‘cure’; that is, we assume P (T = ∞) > 0, then it
is OK that Λ(∞) < ∞. This is allowed since T is not a ‘regular random variable’.

1.4 Censoring

Type-I Censoring Type-I censoring occurs when a failure time ti exceeds a pre-determined
censoring time ci. The censoring time ci is considered as a constant in the study. For
example, a clinical treatment study starts at the calendar time a and ends at b. Patients
could enter the study at different calendar times. The failure time is the time between the
start of treatment (entry) to a certain event. Assume no loss to follow-up. In this case, ci is
the time from entry to b. The actual fialure time ti cannot be observed if ti > ci.

Type-II Censoring This type of censoring is frequently encountered in industrial appli-
cations. From n ordered failure times, only the first r(r ≤ n) times are observed, others are
censored.

For example, put 100 transistors on test at the same time and stop the experiment when
50 transistors burn out. In this example, n = 100 and r = 50. Let t(1), t(2), . . . , t(50) be the
first 50 failure times. Note that t(50) is an estimate of the median failure time.

Random censoring This type of censoring will be the main censoring mechanism that
we deal with in this course. It occurs when the censoring time varies from individual to
individual and is unknown in advance.
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For example, in a follow-up study, the censoring occurs due to the end of the study, loss
to follow-up, or early withdrawals.

Reasons for censoring – patients decide to move to another
hospital

– patients quit treatment because of
side-effects of a drug

– failues occur after the end of study
– etc.

Theoretical setting. Suppose C is the censoring variable. Assume T and C are indepen-
dent (the so-called independent censoring). Define

Y =

{
T if T ≤ C
C if T > C

and the censoring indciators

∆ =

{
1 if data is uncensored, T ≤ C
0 if data is censored, T > C

Assume (Y1, ∆1), (Y2, ∆2), . . . , (Yn, ∆n) are iid copies of (Y, ∆). Under random censor-
ing, what is the actually observed data? Ideally, we would like to observe the “complete data”
t1, t2, . . . , tn. Due to censoring, we only observe “right-censored data” (y1, δ1), (y2, δ2), . . . , (yn, δn)
and possibly some covariate information.

Example A set of observed survival data is

yi 25 18 17 22 27
δi 1 0 1 0 1

The data can also be presented as

25 18+ 17 22+ 27

1.5 Probability Properties

Intuitively, the random variable Y tends to be ‘shorter’ than the failure time of interest,
T . This is clear upon observing Y = min{T, C}. Under the assumption that T and C are
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independent, the survival function of Y is

S
Y
(y) = P (T > y,C > y) = P (T > y)P (C > y)

= S
T
(y)S

C
(y) ≤ S

T
(y) .

Thus, as compared with S
T
, S

Y
assigns more probability to smaller values as compared with

S.

Example. Suppose the censoring time is a fixed constant, C = c0, c0 > 0. Then the
survival function of Y is S

Y
(y) = S

T
(y) if y < c0, and S

Y
(y) = 0 if y ≥ c0. ♦

Example. Suppose T ∼ Exp(θ), θ > 0, and C ∼ Unif(0, β), β > 0. Then the survival
function of Y is

S
Y
(y) =





1 if y ≤ 0

e−θy
(

β−y
β

)
if 0 < y < β

0 if y ≥ β

♦

Hazard function is an important function for various reasons and the so-called ‘risk set’
plays a key role for exploring probability structure of the hazard function. The risk set at t
is defined as

R(t) = {yj : yj ≥ t, j = 1, 2, . . . , n} , t ≥ 0

Property. For t ≥ y, P (T > t | T ≥ y) = P (T > t | Y ≥ y).

Proof. For t ≥ y,

P (T > t | Y ≥ y) =
P (T > t, C ≥ y)

P (T ≥ y, C ≥ y)

=
P (T > t)P (C ≥ y)

P (T ≥ y)P (C ≥ y)

=
P (T > t)

P (T ≥ y)

= P (T > t | T ≥ y) ♦
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Implication of this property. The distribution among observed survivors at y is the
same as the distribution in risk population at y. Also, the hazard probability on uncensored
Y at y from R(y) is the same as the hazard probability of T at y:

P (Y ≈ y, ∆ = 1 | Y ≥ y) = P (C > T ≈ y | Y ≥ y)

=
S

C
(y)f(y)dy

S
T
(y)S

C
(y)

= λ(y)dy

The above fomula can be equivalently expressed by

fu(y | Y ≥ y)dy = λ(y)dy

or more directly,

fu(y | Y ≥ y) = λ(y) (∗)

where the subscript ‘u’ represents ‘uncensored’. Formula in (*) is the base for the use of risk
sets in many nonparametric and semiparametric models when analyzing survival data.

Left censoring

The failure time ti could be too small to be observed. For example, consider a study
in which interest centers on the time to recurrence of a particular cancer following surgical
removal of the primary tumor. A few months after the operation, the patients are examined
to determine if the cancer has recurred. Let T = time from operation to the recurrence of
cancer. Some of the patients at this time may be found to have a recurrence and thus the
actual time is less than the time from operation to the examination. These cases are said to
be left censored.
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1.6 Interval Censoring and Truncation

Interval censoring

The failure time ti falls in an interval (`i, ri) and observe only (`i, ri). For example, let
T = time from treatment onset to disease onset. The onset of disease falls in the interval
formed by two successive clinical visits.

Let `i = time from the treatment onset to the last visit when the ith patient is free
of the disease.

ri = time from the treatment onset to the first visit when the ith patient becomes
diseased.

The best knowledge we have about the true failure time Ti = ti is `i < ti ≤ ri.

Right truncation

The failure time ti is too large to be included in data. A well known example is the
reported AIDS incidences. In this example, T = time from HIV infection to diagnosis of
AIDS. An AIDS incidence is reported to a health institution only when AIDS develops.
Those cases where AIDS occur after the closing date of data collection are excluded from
the data set.

Left truncation (and right censoring)

The presence of left truncation is usually due to the prevalent sampling scheme, that is,
drawing samples from a disease prevalent population. Right censoring is encountered for the
usual reasons (loss to follow-up etc.).

Example Failure time T = time from the onset (or diagnosis) of breast cancer to death. A
prevalent cohort includes a group of women who have developed breast cancer at the time
of recruitment. Those with breast cancer who died before the recruiting time are excluded

10



from the study. The study tends to recruit women with longer failure times.

Double truncation

The failure time ti is included in the data set only if the failure event occurs in a calendar-
time window. For example, T = onset age of a certain disease and the data {ti} are observed
only if the disease occurs in the calendar-time window [a, b]. If double truncation is adopted
as the sampling scheme, those cases that the disease occurs before a or after b will not be
included into the data set.

1.7 Correlated Survival Data

Univariate survival data refer to independent, possibly censored failure times. The statistical
analysis for clusered or stratified failure time data is called multivariate survival analysis.

Bivariate failure times. Observe (y11, y12), (y21, y22), . . . , (yn1, yn2) with censoring indicators
(δ11, δ12), (δ21, δ22), . . . , (δn1, δn2).

• twin data
• eyes data
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c.f. Cox and Oakes (1984).

Clustered failure times.

(y11, y12, . . . , yim1), (y21, y22, . . . , y2m2), . . . , (yn1, yn2, . . . , yn,mn) with censoring indicators
(δ11, δ12, . . . , δ1m1), (δ21, δ22, . . . , δ2m2), . . . , (δn1, δn2, . . . , δn,mn)

• sibling data
• family data
• clustered animal data (litters)

Recurrent event data. Observe (t11, t12, . . . , t1,m1 , c1), (t21, t22, . . . , t2,m2 , c2), . . ., (tn1, tn2, . . . , tn,mn , cn),
where ti1 < ti2 < . . . , ti,mi

< ci. Examples include repeated occurrences of hospitalizations
or infections.

Statistical methods have been partially developed for data described above ........

1.8 Parametric models

Parametric models assume the knowledge of the survival or density function up to K un-
known parameters. In this course, K = 1 or 2. Assume the failure time has the density
function f(t; θ), where θ = (θ1, θ2, . . . , θK) is the unknown vector of parameters. Clearly,
the density and survival functions are completely specified if θ is known.

Example: Exponential distribution.

T ∼ exp(θ), θ > 0.

The Exponential distribution with the parameter θ > 0 has the density function

f(t) = θe−θt ,
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for t > 0. The survival function is

S(t) =
∫ ∞

t
f(u; θ)du =

∫ ∞

t
θe−θudu = e−θt

The hazard function is

λ(t) =
f(t; θ)

S(t; θ)
= θ, a constant. ////

Example: Weibull distribution. The Weibull distribution with the parameters θ > 0 and
β > 0 assumes the parameterized survival function

S(t) = e−(θt)β

,

for t > 0. The density function is

f(t) = −dSθ,β(t)

dt
= βθ(θt)β−1e−(θt)β

The hazard function is

λ(t) =
f(t; θ, β)

Sθ,β(t)
= βθ(θt)β−1 .

Note that the hazard function λ(t) is constant if β = 1, increasing in t if β > 1, and decreas-
ing in t if β < 1.

Example: Gamma distribution. The Gamma distribution with the parameters λ > 0 and
r > 0 is a continuous distribution with the density function

f(t) =
λr

Γ(r)
tr−1e−λt ,

for t ≥ 0, where Γ(r) =
∫∞
0 xr−1e−xdx. The survival and hazard functions can be derived

from the density function. The mean of the Gamma distribution is r/λ and the variance is
r/λ2.

Example: Log-logistic distribution. The Log-logistic distribution with the parameters α > 0
and −∞ < θ < ∞ is a continuous distribution and has the hazard function

λ(t) =
eθαtα−1

1 + eθtα
.

The hazard function decreases monotonically if 0 < α ≤ 1. The hazard function has a single
mode if α > 1. The survival function is

S(t) = [1 + eθtα]−1
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and the density function is

f(t) =
eθαtα−1

(1 + eθtα)2

It is called the log-logistic distribution because logT has a logistic distribution (a sym-
metric distribution with density function similar to the normal density function).

Example: Log-normal distribution. A random variable T is said to have a lognormal distri-
bution with parameters −∞ < µ < ∞ and σ > 0. The probability density function of T
is

f(t) =
1

σ(2π)1/2
t−1 exp{−(log t− µ)2/2σ2} ,

for t ≥ 0, from which the survival and hazard functions can be derived.

The hazard functions for the gamma and lognormal distributions are less interpretable
as compared with the hazard functions for the Weibull and log-logistic distributions. Thus,
the Weibull and log-logistic distributions are more useful for parametric hazard modeling.

1.9 Maximum Likelihood Estimation

Suppose that we are able to observe “complete failure times” t1, t2, . . . , tn.

In general, for a parametric model T ∼ f(t, θ), the likelihood function on the basis of
identically and independently distributed failure times {t1, . . . , tn} is

L(θ) =
n∏

i=1

f(ti, θ).

The maximum likelihood estimate (mle), θ̂, is the θ which maximizes the likelihood
function L(θ). Now we consider the case when θ = θ is a real number. Note tht

log L(θ) =
n∑

i=1

log f(ti; θ)

U(θ) =
d

dθ
log L(θ) =

n∑

i=1

d

dθ
log f(ti; θ)

The mle θ̂ satisfies U(θ̂) = 0. By Taylor’s expansion,

0 = U(θ̂) = U(θ) + U ′(θ)(θ̂ − θ) + an ignorable term.
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Thus

θ̂ − θ ≈ − 1

U ′(θ)
U(θ) = − 1

U ′(θ)

n∑

i=1

d

dθ
log f(Ti; θ)

By statistical theory (law of large number, central limit theorem), when n is large,

(θ̂)
approx∼ Normal(θ, I−1(θ)) = N(θ, I−1(θ))

I(θ) = Fisher information

= E

[
− d2

dθ2
log L(θ)

]

Example: T ∼ exp(θ). The density function is f(t; θ) = θe−θtI(t > 0).

L(θ) =
n∏

i=1

θe−θti

log L(θ) =
n∑

i=1

[log θ − θti]

U(θ) =
d

dθ
log L(θ) =

n∑

i=1

[
1

θ
− ti

]
=

n

θ
−

n∑

i=1

ti

Thus θ̂ = n/
∑n

i=1 ti is the mle.

Note that the Fisher information is I(θ) = E
[
− d2

dθ2 log L(θ)
]

= n/θ2. Thus

θ̂ − θ
approx∼ N

(
0,

θ2

n

)
when n is large

or

θ̂
approx∼ N

(
θ,

θ2

n

)

Thus Prob
(
θ̂ − 1.96 θ√

n
< θ < θ̂ + 1.96 θ√

n

)
≈ 95%. An asymptotic 95% confidence interval

for θ is (
θ̂ − 1.96

θ̂√
n

, θ̂ + 1.96
θ̂√
n

)
.

Regression extension Let xi be a 1×p vector of covariates and θ a p×1 vector of parameters for

subject i. Assume the hazard function is λ(t; xi) = xiθ. Assume T has the pdf (xiθ)e
−(xiθ)ti .

Based on (x1, t1), . . . , (xn, tn), the maximum likelihood techniques can still be applied to the
likelihood function

L(θ) =
n∏

i=1

(xiθ)e
−(xiθ)ti
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2 One Sample Estimation

2.1 Complete Failure Times: Nonparametric Models

Recall

S(t) = P(T > t)
= Population fraction surviving beyond t

The set of the complete data t1, t2, . . . , tn reflects the structure of population failure times.
Thus, we estimate S(t) by the sample fraction surviving beyond t:

Ŝ(t) =
#ti > t

n
=

1

n

n∑

i=1

I(ti > t)

Ŝ(t) is also called the empirical survival distribution. How to derive confidence interval for
S(t)?

Define

B(t) =
n∑

i=1

I(Ti > t) = a Binomial variable

B(t) ∼ Binomial(n, p = S(t))

E[Ŝ(t)] =
1

n
· np = p = S(t)

Var[Ŝ(t)] =
1

n2
Var(B(t)) =

1

n2
npq

=
S(t)(1− S(t))

n

When n is large,

Ŝ(t)
approx∼ Normal

(
S(t),

S(t)(1− S(t))

n

)
.

A 95% confidence interval for S(t) is


Ŝ(t)− 1.96

√
Ŝ(t)(1− Ŝ(t))

n
, Ŝ(t) + 1.96

√
Ŝ(t)(1− Ŝ(t))

n


 .

Remarks

• If n is small (n < 20), it is more appropriate to find confidence intervals using the binomial
distribution tables (see Mood, Graybill and Boes, Chapter 8).
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• If n is large (n ≥ 30), use the normal approximation to derive confidence intervals.

• The normal approximation works better when 0 << S(t) << 1 (that is, S(t) is not close
to 0 or 1). When S(t) is close to 0 or 1, the Poisson approximation technique is better.

2.2 Right Censored Failure Times: Parametric Models

We consider only random censoring. The observed data could be right censored:

(y1, δ1), (y2, δ2), . . . , (yn, δn)

Note that

yi = min(ti, ci) =

{
ti uncensored case
ci censored case

δi = I(yi = ti) =

{
1 uncensored case
0 censored case

where ti is the failure time and ci is the censoring time.

Assume Ti and Ci are independent. In this case, the censoring process is said to be
uninformative (that is, independent censoring). Let S(t; θ) = pr(Ti > t), G(c) = pr(Ci > c),
and let f(t; θ) and g(c) be the corresponding density functions. The likelihood function on
the basis of (y1, δ1), . . . , (yn, δn) is

L =
n∏

i=1

{[
f(yi; θ)

δiS(yi; θ)
1−δi

] [
g(yi)

1−δiG(yi)
δi

]}

or simply

L ∝
n∏

i=1

[
f(yi; θ)

δiS(yi; θ)
1−δi

]
(∗)

Note that the validity of (*) relies on the independence between the failure and censoring
times. If Ti and Ci are not independent, we then have informative censoring since the value
of Ci could have implication on the value of Ti.

2.3 Right Censored Failure Times: Nonparametric Models

Without parametric assumption on the distribution of Ti, how do we estimate the survival
function S(t)? First consider a simple example.

Example. A prospective study recruited 100 patients in January, 1990 and recruited 1000
patients in January, 1991. The study ended in January, 1992. Survival time T = time from
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treatment (enrollment) to death. Suppose 70 patients died in year 1 and 15 patients died
in year 2 from the first cohort (recruited in 90), and 750 patients died in year 1 from the
second cohort. Note that T is a discrete failure time, T = 1, 2, . . .; say, T = 2 means death
during the 2nd year.

Assume the two cohorts are sampled from the same target population. When censoring
is considered random, note that this assumption implicitly implies uniformative censoring
(why?).

How to estimate 2-year survival rate S(2)?

Approach 1 Reduced sample estimate

Only use information from individuals who had been followed for at least two years. That
is, use only group 1 data to derive

Ŝ(2) =
100− 70− 15

100
=

15

100
= 0.15

This estimate is statistically appropriate but inefficient. It is appropriate in the sense that
Ŝ(2) is very close to S(2) when n1 is large. It is inefficient because only part of the data is
used. Here

v̂ar(Ŝ(2)) =
Ŝ(2)(1− Ŝ(2))

100
.

Approach 2 (Statistically inappropriate approaches)

— Assume 250 individuals from group 2 died in year 2,

Ŝ(2) =
15

1100
= 0.014

— Assume 250 individuals from group 2 remained alive in year 2

Ŝ(2) =
15 + 250

1100
= 0.241
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— Exclude 250 patients from the analyzed data (Watch out! A common mistake!)

Ŝ(2) =
15

1100− 250
= 0.018.

Approach 3 (A simple case of the Kaplan-Meier estimate). Decompose the survival function
into conditional probabilities.

S(2) = P(T > 2) =
Pr(T ≥ 2)

Pr(T ≥ 1)
· Pr(T ≥ 3)

Pr(T ≥ 2)
= Pr(T ≥ 2|T ≥ 1) · Pr(T ≥ 3|T ≥ 2)

P̂ r(T ≥ 2|T ≥ 1) =
30 + 250

1100
=

280

1100

P̂ r(T ≥ 3|T ≥ 2) =
15

30

Thus

Ŝ(2) =
280

1100
· 15

30
= 0.127.

This estimator is more efficient than the reduced sample estimate. ////

Now consider the Kaplan-Meier estimator in its general form.

Kaplan-Meier Estimator

The Kaplan-Meier estimator (1958, JASA) is a nonparametric estimator for the survival
function S. Consider now either random censoring or type-I censoring. Assume uninforma-
tive censoring. That is, assume that Ti is independent of Ci for each i. The data are

(y1, δ1), (y2, δ2), . . . , (yn, δn).

Let y(1) < y(2) < . . . < y(k), k ≤ n, be the distinct, uncensored and ordered failure times.

Example. Data: 3, 2+, 0, 1, 5+, 3, 5

(y(1), y(2), y(3), y(4)) = (0, 1, 3, 5). ////

Suppose y(i−1) ≤ t < y(i). A principle of nonparametric estimation of S is to assign
positive probability to and only to uncensored failure times. Therefore, we try to estimate

S(t) ≈ Pr(T ≥ y(2))

Pr(T ≥ y(1))
· Pr(T ≥ y(3))

Pr(T ≥ y(2))
. . .

P r(T ≥ y(i))

Pr(T ≥ y(i−1))
.
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How to estimate S(t)? Define

R(j) = {yk : yk ≥ y(j)}
d(j) = # of failures at y(j)

N(j) = # of individuals at risk at y(j) = #R(j)

Example Using the previous example 3 2+ 0 1 5+ 3 5

N(1) = 7, N(2) = 6, N(3) = 4, N(4) = 2
d(1) = 1, d(2) = 1, d(3) = 2, d(4) = 1. ////

Now estimate
Pr(T≥y(j+1))

Pr(T≥y(j))
by

N(j)−d(j)

N(j)
, j = 1, 2, . . . , i − 1. The Kaplan-Meier estimate

is thus

Ŝ(t) =

(
1− d(1)

N(1)

) (
1− d(2)

N(2)

)
. . .

(
1− d(i−1)

N(i−1)

)

=
∏

y(j) ≤ t

(
1− d(j)

N(j)

)

Example 3, 2+, 0, 1, 5+, 3, 5

uncensored
times 0 1 3 5
d(i) 1 1 2 1
N(i) 7 6 4 2

Ŝ(0) =
(
1− 1

7

)
=

6

7
= 0.86

Ŝ(1) =
6

7

(
1− 1

6

)
=

5

7
= 0.71

Ŝ(3) =
5

7
·
(
1− 2

4

)
=

5

14
= 0.36

Ŝ(5) =
5

14

(
1− 1

2

)
=

5

28
= 0.18

Remark In general, if the largest observed time is uncensored, the Kaplan-Meier estimate will
reach the value 0 as t ≥ the largest observed time. if the largest observed time is censored,
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the Kaplan-Meier estimate will not go down to 0 and is unreliable for t > largest yi. In this
case, we say that Ŝ(t) is undetermined for t > the largest uncensored time.

Greenwood’s formula

The next question is how to identify the variance of the Kaplan-Meier estimate. The
idea is sketched for grouped data. First group the data using the uncensored times y(1) <
y(2) < . . . < y(k).

For each risk set R(j) = {yi : yi ≥ y(j)}, counting the number of failures is a binomial
experiment. Thus d(j) ∼ Binomial (N(j), λ(j)), where λ(j) is the hazard at y(j). Let q(j) =
1− λ(j). For y(i−1) ≤ t < y(i),

var(log Ŝ(t)) = var(log{q̂(1)q̂(2), . . . , q̂(i−1)})
= var(log q̂(1) + log q̂(2) + . . . + log q̂(i−1))

=
i−1∑

j=1

var(log q̂(j))

The variances are additive because the risk sets at y(1), y(2), . . . , y(k) are nested (R(1) ⊃ R(2) ⊃
. . .). Thus, by statistical theory, we can treat log q̂(1), log q̂(2) . . . as uncorrelated terms. Use

the delta method, for a transformation φ of an estimate θ̂, we have

var(φ(θ̂)) ≈ [φ′(θ)]2var(θ̂).

Thus

var(log q̂(j)) ≈
[

1

q(j)

]2

var(q̂(j)) =
1

q2
(j)

· λ(j)q(j)

N(j)

=
λ(j)

q(j)N(j)

,

var(log Ŝ(t)) =
i−1∑

j=1

var(log q̂(j)) ≈
∑

y(j)≤t

(
λ(j)

q(j)N(j)

)

Use the delta method again,

σ(t)2 = var(Ŝ(t)) = var( exp
φ

(log Ŝ(t))

θ̂

)

≈ [S(t)]2 · var(log Ŝ(t))

Plug in λ̂(j) = d(j)/N(j) and q̂(j) =
N(j)−d(j)

N(j)
. The Greenwood’s formula, for estimating the

variance of the Kaplan-Meier estimate, is

v̂ar(Ŝ(t)) ≈ [Ŝ(t)]2
∑

y(j)≤t
d(j)

N(j)(N(j)−d(j))

21



Property When n is large

Ŝ(t)
approx∼ Normal(S(t), σ(t)2)

where σ(t)2 can be estimated by the Greenwood’s formula.

Remark 1: This general property holds also for continuous survival data.
Remark 2: A more formal approach which allows for theoretical developments of continuous
survival data is through a representation of S:

S(t) = e−
∫ t

0
λ(v)dv = e−

∫ t

0

dFu(v)
R(v)

where F u(v) is the cdf of uncensored Y and R(v) is the cdf Y . Let F̂ u, R̂ be the empirical
distribution estimates. Then

Ŝ
KM

(t) ≈ e
−

∫ t

0

F̂u(dv)

R̂(v) .

Theoretical properties can be developed based on probability theory.

Nonparametric MLE

Kaplan and Meier showed that the K-M estimate is the unique nonparametric mle from
the likelihood function

L ∝
n∏

i=1

[
f(yi)

δiS(yi)
1−δi

]
,

where the likelihood maximization is subject to the class of probability distributions which
assign probability to, and only to uncensored failure times. To see the Kaplan-Meier esti-
mator is the unique mle of the likelihood function L:

L ∝
n∏

i=1

[
f(yi)

δiS(yi)
1−δi

]
=

n∏

i=1

{
f(yi)

S(yi)

}δi

{S(yi)}

=





∏

(i)

λ
d(i)

(i)









n∏

i=1

∏
y(j)<yi

(1− λ(j))



 =

∏

(i)

λ
d(i)

(i) (1− λ(i))
N(i)−d(i)

Thus, the unique mle of λ(i) is d(i)/N(i) and the Kaplan-Meier estimate is the unique mle.

Reference: Kaplan & Meier JASA, 1958.

Remark: K-M used S(t) = P (T ≥ t) instead of S(t) = P (T > t) for their MLE parameter-
ization.

Example (Lee, p29) Forty-two patients with acute leukemia were randomized into a treat-
ment group and a placebo group to assess the treatment effect to maintain remission. T :
remission time.
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• 6-MP (6-mercaptopurine) group, n1 = 21

6, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+,

19+, 20+, 25+, 32+, 32+, 34+, 35+ (months)

• Placebo group, n2 = 21

1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15,

17, 22, 23 (months)

The empirical survival function from the placebo group is

Ŝ(0) =
21

21
= 1

Ŝ(1) =
19

21

Ŝ(2) =
17

21

Ŝ(3) =
16

21

Ŝ(4) =
14

21
= 0.67

...

v̂ar(Ŝ(4)) =
(0.67)(0.33)

21

ŜD(Ŝ(4)) =

√
(0.67)(0.33)

21
= 0.103

A 95% confidence interval at t = 4 is

(0.67− 1.96× 0.103, 0.67 + 1.96× 0.103) = (0.47, 0.87).

Warning: The sample size n2 = 21 may not be large enough for the normal approximation!

For the 6MP group, use the K-M estimate to derive

Ŝ(5) = 1

Ŝ(6) =
(
1− 3

21

)

Ŝ(7) =
(
1− 3

21

) (
1− 1

17

)

Ŝ(10) =
(
1− 3

21

) (
1− 1

17

) (
1− 1

15

)
= 0.753

............................
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Apply the Greenwood’s formula to get

v̂ar(Ŝ(10)) = (0.753)2
(

3

21× 18
+

1

17× 16
+

1

15× 14

)

= 0.0093

A 95% confidence interval for S(10) is

(0.753− 1.96
√

0.0093 , 0.753 + 1.96
√

0.0093) = (0.564 , 0.942)

What about Ŝ(11) and v̂ar(Ŝ(11))?

— Same as (Ŝ(10) and v̂ar(Ŝ(10)). ////

Remark 1 The K-M estimate is a nonparametric method which can be applied to either
discrete or continuous data. For a rigorous development of statistical theory, see
Kalbfleisch and Prentice (1980).

Remark 2 The accuracy of the K-M estimate and Greenwood’s formula relies on large
sample size of uncensored data. Make sure that you have at least, say, 20 or 30
uncensored failure times in your data set before using the methods.

Remark 3 Greenwood’s formula is more appropriate when 0 << S(t) << 1. Using Green-
wood’s formula, the confidence interval limits could be above 1 or below 0. In these
cases, we usually replace these limit points by 1 or 0. For example, a 95% confidence
interval could be (0.845, 1.130), we will use (0.845, 1) instead.
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3 Proportional Hazrds Model (PHM)

3.1 The model

Now we move to regression analysis. Assume covariates are available on each individual

xi = (xi1, xi2, . . . , xip)
t.

The PHM assumes

λ(t; xi) = λ0(t)e
β1xi1+β2xi2+...βpxip

= λ0(t)e
βxi

where xi is p× 1 vector of covariates and β is a 1× p vector of parameters. Interpretation
of the model:

Hazard at t for given xi = (baseline hazard at t) × (Risk factor eβxi)

Characteristics of the model:

– The PHM is a model on the basis of hazard function
Note: Alternatively, you might be interested in the ‘accelerated failure time model’:

Ti = T0i · exiβ ⇐⇒
{

log Ti = βxi + log T0i, T0i ∼ S0

(a standard linear model)

– The baseline hazard λ0(t) is left unspecified (nonparametric), thus the PHM is a semi-
parametric model: λ0 = nonparametric component, β: parametric component.

– In most applications related to public health, the parameter β is of primary interest and
λ0(t) is of minor interest. However, estimation of λ0(t) is desirable when we wish to
predict the hazard for an individual with covariates xi.

3.2 PHM as Lehmann’s Alternatives

The PHM can also be expressed as

S(t; xi) = S0(t)
eβxi
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Proof

S(t; xi) = e−
∫ t

o
λ(u;xi)du

= e−
∫ t

o
λ0(u)eβxidu

= e[−
∫ t

o
λ0(u)du]·eβxi

= S0(t)
eβxi

. ////

We say that a class of distributions with the form

S(t) = S0(t)
γ

for some positive γ is a family of “Lehmann’s alternatives”. Clearly, the PHM implies that
the distribution functions form a family of “Lehmann’s alternatives”. The PHM is a very
flexible model because of its semiparametric feature, but the validity of the model is not
automatic and still needs to be confirmed.

Example A two-sample case

x =

{
0 represents treatment A
1 represents treatment B

Under the PHM,
λ(t; x) = λ0(t)e

βx.

That is
λ1(t) = λ0(t)e

β.

Using Lehmann’s alternative expression, we derive

S1(t) = S0(t)
eβ

log S1(t) = eβ · log S0(t)
= constant · log S0(t)

For exploratory analysis, to examine the validity of the PHM for two-sample case, we
can use the K-M estiamtes Ŝ1 and Ŝ0 to see if

φ(t) =
log Ŝ1(t)

log Ŝ0(t)
≈ constant.

The PHM is a valid model if φ(t) remains a constant over time.
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3.3 Partial Likelihood Method

Assume independent censoring: Conditional on xi, Ti and Ci are independent.

Assume the PHM

λ(t; xi) = λ0(t)e
β1xi1+···+βpxip = λ0(t)e

βxi

Data : (y1, δ1,x1), · · · , (yn, δn, xn)
yi = observed follow-up time
δi = censoring indicator
xi = covariates

H(i) = data history up to y−(i)

Assume failure times are not tied. The likelihood function is

L =
n∏

i=1

f(yi; xi)
δiS(yi; xi)

1−δi

↑ ↖
density function survival function

=
∏

(i)

p(x(i)|H(i), y(i))P (H(i), y(i))

=





∏

uncensored
(i)




ex(i)β

∑
j∈R(i)

exjβ







× {something ignorable}

where R(i) = Risk set at y(i), and x(i) = covariates corresponding to y(i).

The first likelihood is called the “partial likelihood”. Cox (1972, JRSS-B; 1975, Biometrika)
identified the above likelihood structure. Thus the partial likelihood method is also referred
to as Cox’s method.

The result is great!! Why?

• The result is derived under an attractive model. The PHM has nice interpretations in
terms of hazards and it is semiparametric.

• The partial likelihood only involves β!! It does not involve λ0(t), and thus computation
of β̂ is manageable and inferences can be developed.

How did Cox obtain the ideas of partial likelihood?
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Assume no ties in the uncensored failure times. Let Lp = The partial likelihood.

Any “likelihood” must correspond to a probability (or density) of some kind. Note that

P

(
individual x(i) fails at y(i)| a failure occurring at y(i) and

data history before (<)y(i)

)

= P
(
x(i) fails at y(i)| a failure occurring at y(i) andR(i)

)

=
λ0(y(i))e

βx(i)

∑
j∈R(i)

λ0(y(i))e
βxj

=
eβx(i)

∑
j∈R(i)

eβxj

Thus, the “partial likelihood” is

Lp =

∏

uncensored
(i)

P(x(i) fails at y(i)|a failure occurring at y(i), R(i))

=
∏

(i)




eβx(i)

∑
j∈R(i)

eβxj




Derive the maximum likelihood estimate β̂ by maximizing Lp over possible values of β.

Example Two-sample case

No treatment: 7, 9+, 18

Treatment: 12, 19+

x =





0 no treatment
PHM : λ(t; x) = λ0(t)e

xβ

1 treatment

The partial likelihood is

Lp =

[
e0β

e0β + e0β + e0β + eβ + eβ

] [
eβ

e0β + eβ + eβ

] [
e0β

e0β + eβ

]

=
[

1

3 + 2eβ

] [
eβ

1 + 2eβ

] [
1

1 + eβ

]

Obtain the mle β̂ by maximizing Lp. ////
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3.4 Generalization to Time-Dependent Covariates

Sometimes part of the covariates could be time-dependent. For example, the time dependent
covariates could be

– age at failure time t

– dosage level at failure time t

– accumulative dosage at failure time t

– treatment status (off or on) at failure time t

or a transformation of the above time-dependent measurements.

Time-dependent covariates for the ith individual are

xi(t) = (xi1(t), xi2(t), . . . , xip(t))

We shall use the general notation xi(t) instead of xi, even though some of the covariates are
time-independent. The PHM is now

λ(t; xi(u), u ≤ t) = λ0(t)e
βxi(t).

With time-dependent covariates, the previous partial likelihood argument still works, and
the partial likelihood becomes

Lp =
∏
y(i)




eβx(i)(y(i))

∑
j∈R(i)

eβxj (y(i))




Example. Suppose

xi(t) = (xi1 , xi2(t), xi3(t))

xi1 =

{
1 treatment
0 no treatment

xi2(t) = the ith individual’s age at t

xi3(t) = (the ith individual’s age at t)2

T = time from entry to death.
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Note that xi2(0) = baseline age of the ith patient. The partial likelihood is

Lp =
∏
y(i)


 eβ1x(i1)+β2x(i2)(y(i))+β3x(i3)(y(i))

∑
j∈R(i)

eβ1xj1+β2xj2(y(i))+β3xj3(y(i))




Suppose the observed data are

Treatment
I.D. 001 002

age at entry 10 12
yi 12 19+

No treatment
I.D. 003 004 005

age at entry 4 0 11
yi 7 9+ 18

Time-dependent age
I.D./y(i) 7 12 18

xi1 = 1 001 17 22
002 19 24 30

003 11
xi1 = 0 004 7

005 18 23 29

(Time-dependent age)2

I.D./y(i) 7 12 18
xi1 = 1 001 172 222

002 192 242 302

003 112

xi1 = 0 004 72

005 182 232 292

Note: Computer needs the above “covariate process data” for time-dependent covariates
analysis.

Lp =


 eβ1·0+β2·11+β3·112

eβ1·1+β2·17+β3·172 + eβ1·1+β2·19+β3·192 + . . . + eβ1·1+β2·18+β3·182



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·

 eβ1·1+β2·22+β3·222

eβ11+β2·22+β3·222 + eβ1·1+β2·24+β3·242 + eβ1·0+β2·23+β3·232




·

 eβ1·0+β2·29+β3·292

eβ1·0+β2·29+β3·292 + eβ1·1+β2·30+β3·302


 ////

Remark: Using the baseline age xi2 or time-dependent age xi2(t) as a linear term in
the proportional hazards model would end up with the same partial likelihood estimate β̂2

because

λ0(t)e
β1xi1+β2xi2(t)+β3xi3(t) = λ0(t)e

β1xi1+β2(xi2+t)+β3xi3(t)

= λ∗0(t)e
β1xi1+β2xi2+β3xi3(t)

where λ∗0(t) = λ0(t)e
β2t is also a baseline hazard function.

Example T : Time from onset of treatment to AIDS
(definition before Jan. 1993)
xi(t) : CD4 count for the ith individual at time t

λ(t; xi(u), u ≤ t) = λ0(t)e
βxi(t).

Relative hazard (R.H.) att =
λ(t; xi(u), u ≤ t)

λ(t; xk(u), u ≤ t)

=
λ0(t)e

β·xi(t)

λ0(t)eβ·xk(t)

= eβ(xi(t)−xk(t))

If β = −0.01 , xi(t) = 250 , xk(t) = 200, then

R.H. = e−0.01×(250−200) = e−0.5 ≈ 0.6065.

Note that the R.H. is determined by the covariate information defined, theoretically, at t,
although in applications we could use an earlier measurement (such as the treatment received
one month ago) as the current x(t). So, be smart and flexible when a time-dependent
covariate is used in the analysis.
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3.5 Tied Survival Data

The partial likelihood methods so far do not handle tied survival data. When we analyze
discrete or grouped survival data, the problem of how to analyze such data naturally arises.
Consider the following simple PHM: λ(t; xi) = λ0(t)e

βxi ,

No treatment 7 9+ 18 x1, x2, x3 = 0

Treatment 18 19+ x4, x5 = 1

Recall the partial likelihood construction is motivated by

P(x(i) fails at y(i)| a failure occurring at y(i), R(i)).

Now, at y(2) = 18, the probability becomes

P(x3 and x4 fail at 18 |two failures at 18, risk set at 18 = {x3, x4, x5})

=
λ0(18)eβ·x3 · λ0(18)eβ·x4

λ0(18)eβ·x3 · λ0(18)eβ·x4 + λ0(18)eβ·x4 · λ0(18)eβ·x5 + λ0(18)eβ·x3 · λ0(18)eβx5

=
eβ·0+β·1

(eβ·0+β·1 + eβ·1+β·1 + eβ·0+β·1)

The partial likelihood is

Lp =

(
eβ·0

3 · eβ·0 + 2 · eβ·1

) (
eβ·0+β·1

eβ·0+β·1 + eβ·1+β·1 + eβ·0+β·1

)

=
(

1

3 + 2eβ

) (
eβ

2eβ + e2β

)
////

For the general data (x1, y1, δ1), (x2, y2, δ2), . . . , (xn, yn, δn), the partial likelihood for tied
survival data is

Lp =
∏

(i)




e

∑
j∈D(i)

β·xj (y(i))

∑
combinations
D∗

(i)
⊂R(i)

e

∑
j∈D∗

(i)

β·xj(y(i))



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Where D(i) is the set of “deaths” (or failures) occurring at y(i), D
∗
(i) is a a combination of

deaths (or failures) from the risk set R(i), with the restriction #D∗
(i) = #D(i).

Computation of the mle from Lp for tied survial data in a big problem. Statisticians are
still developing fast algorithms for calculation!

– If you have heavily tied survival data, check your computing packages to see if they
handle such data.

– Some of the computing packages use the Breslow’s approach (Breslow, 1972, Biometrics)
to handle problems with tied data. The results are reasonably accurate if you have a
small proportion of ties. Here the Breslow’s approach refers to: Each of a set of tied
failure times is sequentially treated as though it occurred just before the others.

3.6 Discrete Survival Data

In the situation that the failure times are truly discrete, we may replace the proportional
hazards model by the discrete logistic regression model

λ(tk; x(u), u ≤ tk)

1− λ(tk; x(u), u ≤ tk)
=

λ0(tk)

1− λ0(tk)
eβx(tk)

where tk, k = 1, 2, . . . , K, are the discrete points of the failure time T . Equivalently, the
logistic model can be also expressed as

λ(tk; x(u), u ≤ tk)

1− λ(tk; x(u), u ≤ tk)
= eαk+βx(tk)

with eαk = λ0(tk)/{1− λ0(tk)}.

There are a number of approaches developed to estimate the parameter β; see Breslow
and Day (Volume 1, 1980) for details.

3.7 Estimation of λ0(t)

Breslow (1972, JRSS B) gave a heuristic argument. He assumed λ̂0(t) to be constant between
uncensored survival times. Let λ̂(0), λ̂(1), λ̂(2), . . . be constants

λ̂0(t) =





λ̂(0) 0 ≤ t < y(1)

λ̂(1) y(1) ≤ t < y(2)

· · ·
.
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Say, we are interested in λ̂(2). Tbe people in the risk set at y(2) are in R(2). Since we know
one person fails at y(2), thus for given (y(2), R(2)),

1 =
∑

j∈R(2)

P (the jth individual fails at y(2)|y(2), R(2))

=
∑

j∈R(2)

(y(3) − y(2))λ̂(2)e
βxj

= (y(3) − y(2))λ̂(2)

∑

j∈R(2)

eβxj

Thus, the hazard probability between y(2) and y(3) is

(y(3) − y(2))λ̂(2) =
1

∑
j∈R(2)

eβxj

Now use β̂ (the mle derived from the partial likelihood) to derive

λ̂(2) =
1

(y(3) − y(2))
∑

j∈R(2)
eβ̂xj

Now, you may estimate an individual’s hazard probability between y(2) and y(3) by

(y(3) − y(2)) · { hazard with xi in [y(2), y(3))}

= (y(3) − y(2)) · λ̂(2)e
ˆβxi

=
e

ˆβxi

∑
j∈R(2)

eβ̂xj
,

where xi is that indiv’s covariates. Similary, you can also estimate an individual’s hazard
probability between y(m) and y(m+1) by

e
ˆβxi

∑
j∈R(m)

e
ˆβxj

If you are interested in the “cumulative hazard probability” within (0, y(m+1)), you just add
up the hazard probabilities

e
ˆβxi

∑
j∈R(1)

e
ˆβxj

+ . . . +
e

ˆβxi

∑
j∈R(m)

e
ˆβxj
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Note: Although the estimate of the cumulative hazard probability described above is statis-
tically accurate when the sample size is large, the Breslow’s estimate of the hazard function
can be greatly improved by smoothing techniques.

3.8 Goodness of Fit

Time-independent x - material from Miller’s book, p168-170

Suppose we want to check on the validity of proportional hazards model. In the case that
x is one-dimensional, an approach of goodness-of-fit is to partition the x-axis into K inter-
vals, compute a separate Kaplan-Meier estimate for each interval, then apply the 2-sample
goodness-of-fit procedures. When the time-independent covariate x is multi-dimensional, we
consider the following approach. Define

Λxi
(Ti) = eβxi

∫ Ti

0
λ0(u)du

Thus, because Λxi
(Ti) is monotonic in Ti,

P(Λxi
(Ti) > t) = P(Ti > Λ−1

xi
(t))

= exp(−Λxi
(Λ−1

xi
(t)))

= e−t

Thus, the random variable Λxi
(Ti) follows Exponential(θ = 1) distribution. Further, (Λx1(y1), δ1),. . .,

(Λxn(yn)), δn) form a sample with censoring. Because Λxi
(yi) depends on β and λ0(t), sub-

stitute the corresponding estimates and define

Λ̂i = Λ̂xi
(Yi) = eβ̂xi

∫ Yi

0
λ̂0(u)du .

Let Ŝ(t) be the Kaplan-Meier estimate based on (Λ̂1, δ1),. . ., (Λ̂n, δn). Under the proportional
hazards model, logS(t) = −t is a linear function of t. To verify the validity of the proportional
hazards model, check if

t

logŜ(t)
= −1

is approximately satisfied.

Time-dependent x(t)
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When the covariate x(t) is time-dependent, the above techniques no longer work for
goodness-of-fit. There is a large literature regarding how to construct tests to verify the
proportional hazards model assumptions. The so-called ‘Martingale residuals’ are used as
the fundamental statistics for constructing the tests. For continuous survival data, define a
‘residual’ at y(i) as

r(i) = x(i)(y(i))−
∑

j∈R(i)
xj(y(i)) exp(βxj(y(i)))

∑
k∈R(i)

eβxk(y(i))

= x(i)(y(i))− E[covariate at y(i) | R(i)]

Each residual term has 0 expectation. Thus, after replacing β by β̂, the corresponding
residual plot should reflect this specific feature.
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4 Two-Sample Testing

Goal of testing: Determine if there is a difference between two groups.

Some of the “traditional methods” are appropriate for complete failure times but not
applicable to censored data.

4.1 Complete Failure Times

Suppose there is no censoring and the data include t1, t2, . . . , tn. We are interested in the
t-year survival rate, S(t), and observe

D D̄
Treatment A a b nA

B c d nB

mD mD̄ n

D : Failing in t years

D̄ : Surviving beyond t years

pA = P(D|A)

pB = P(D|B)

Consider the following way to construct a χ2 test statistic:

D D̄
Treatment A a b nA

B c d nB

mD mD̄ n

Null hypothesis H0 : pA = pB or, equivalently, SA(t) = SB(t).

Conditional on nA, nB,mD,mD̄, the count “a” follows a hypergeometric distribution (un-
der H0) with

E0(A) = mD

(
nA

n

)
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Var0(A) =
nAnBmDmD̄

n2(n− 1)

Construct a test statistic

T =


a−mD

(
nA

n

)
√

nAnBmDmD̄

n2(n−1)




2

when n is large, T ∼ χ2(1).

4.2 A Test for Right Censored Data

Suppose t-year survival rate is of interest

H0 : SA(t) = SB(t).

Data could be censored before t. We use the K-M estimate to estimate SA(t) and SB(t), and
construct a test statistic

T =
ŜA(t)− ŜB(t)

ŜD[ŜA(t)− ŜB(t)]
∼ N(0, 1).

Here SD[ŜA(t)− ŜB(t)] can be estimated by Greenwood’s formula,

Var[ŜA(t)− ŜB(t)] = Var(ŜA(t)) + VarŜB(t))

ŜD[ŜA(t)− ŜB(t)] =
√

V̂ar(ŜA(t)) + V̂ar(ŜB(t)),

where V̂ar is derived by by Greenwood’s formula.

Disadvantage of test: This test only tests the survival difference at a specified time, t.
It does not test the “overall” difference of two survival functions. See Pepe and Fleming for
alternative approaches (1989 Biometrics). Is it possible to propose “global” nonparametric
tests for assessing difference in survival?

4.3 Log-rank Test for Right Censored Data

Ideas: 1. Create a 2× 2 table at each uncensored failure time
2. The construction of each 2× 2 table is based on the
corresponding risk set.
3. Combine information from tables
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The nully hypothesis is

H0 : λA(t) = λB(t)(or, SA(t) = SB(t)) for all t

Note: Where “for all t” might be replaced by “for observed t”.

The general concept to construct a test statistic at an uncensored time y is the following:
At an uncensored time y(y = y(i) for some i),

D D̄
Treatment A d nA − d nA

Treatment B mD − d nB − (mD − d) nB

mD mD̄ N

N : # individuals in the risk set at y from pooled data
d: # failures at y from group A
mD:# failures at y from pooled data
nA: # individuals in the risk set at y from group A
nB:# individuals in the risk set at y from group B
mD̄ = N −mD

Use the following method to construct the test statistic: conditional on nA, nB, mD,mD̄,
the random number d follows a hypergeometric distribution (under H0) with probability

(
nA

d

) (
nB

mD − d

)

(
N
mD

) max(0,mD − nB) ≤ d ≤ min(nA,md).

Under H0,

E0(D) = mD

(
nA

N

)

Var0(D) =
nAnBmDmD̄

N2(N − 1)

Z =
∑k

i=1
(D(i)−E0[D(i)])√∑k

i=1
Var0(D(i))

∼
n large

N(0, 1)
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For the calculation at Z = z,

z =

∑k
i=1

(
d(i) −

mD(i)
·nA(i)

N(i)

)

√∑K
i=1

nA(i)
nB(i)

mD(i)
mD̄(i)

N2
(i)

(N(i)−1)

when do we reject H0?

The null hypothesis is H0 : λA(t) = λB(t) for all t. Consider three different kinds of
alternatives:

(A1) H1 : λA 6= λB (no prior knowledge)
(A2) H1 : λA < λB (treatment A is better)
(A3) H1 : λA > λB (treatment B is better)

Usually the significance level of a test is set up to be 0.05.

For (A1), use

Z2 =




∑k
1(D(i) − E0[D(i)])√∑k

1 Var0(D(i))




2

∼
n large

χ2(1)

Reject H0 when z2 > 3.84 (|z| > 1.96)

p-value = Probability for values larger than z2.

For (A2),

When H1 is true, Z is likely to be negative, so reject H0 when z is small, that is,
z < −1.645 .
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P -value = Probability for values smaller than z.

For (A3)

When H1 is true, Z is likely to be positive, so reject H0 when z is large, that is, z > 1.645

P -value = Probability for values larger than z.

Example Group A 3, 5, 7, 9+, 18
Group B 12, 19, 20, 20+, 33+

Uncesored: 3, 5, 7, 12, 18, 19, 20
H0 : λA(t) = λB(t)

y(1) = 3
D D̄

A 1 4 5
B 0 5 5

1 9 10

y(2) = 5
D D̄

A 1 3 4
B 0 5 5

1 8 9

y(3) = 7
D D̄

A 1 2 3
B 0 5 5

1 7 8
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y(4) = 12
D D̄

A 0 1 1
B 1 4 5

1 5 6

y(5) =18
D D̄

A 1 0 1
B 0 4 4

1 4 5

y(6) = 19
D D̄

A 0 0 0
B 1 3 4

1 3 4

y(7) = 20
D D̄

A 0 0 0
B 1 2 3

1 2 3

y(i) d(i) E0[d(i)] Var0[d(i)]

3 1 1× 5
10

= 0.5 5×5×1×9
102.9

= 0.25

5 1 1× 4
9

= 0.44 4×5×1×8
92.8

= 0.2469

7 1 1× 3
8

= 0.38 0.2344

12 0 1× 1
6

= 0.17 0.1389

18 1 1× 1
5

= 0.20 0.1600

19 0 1× 0
4

= 0 0

20 0 1× 0
3

= 0 0

7∑

1

(d(i) − E0(d(i))) = (1− 0.5) + . . . + (0− 0) = 2.31
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7∑

1

Var0(d(i)) = 0.25 + . . . + 0 = 1.030

z =
2.31√
1.030

= 2.28
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Now if H1 : λA 6= λB (two-sided)

z2 = (2.28)2 = 5.198 > 3.84

p-value = 0.0226 ⇒ reject H0.

if H1 : λA > λB (one-sided)

z = 2.28 > 1.645

p-value = 0.0113 ⇒ reject H0.

Warning: Sample size might be too small for the validity of χ2 approximation!

4.4 Generalization of Log-Rank Test

After constructing a sequence of 2× 2 tables at uncensored times, we consider the statistic

T =
∑

uncensored
(i)

w(i)(d(i) − E0[d(i)])

where w(i) is the “weight” on the table at y(i). The variance of T is

∑

(i)

w2
(i)Var(d(i)).

Define

z =

∑
(i) w(i)(d(i) − E0(d(i)))√∑

(i) w2
(i)Var0(d(i))

=

∑
(i) w(i)

(
d(i) −

mD(i)
nA(i)

N(i)

)

√
∑

(i)

w2
(i)

nA(i)
nB(i)

mD(i)
mD̄(i)

N(i)(N(i)−1)

approx
∼

n large
N(0, 1)
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Three cases of interest:

(i) w(i) = 1 for all (i), T = log-rank test

(ii) w(i) = N(i), T = Gehan’s test (1965, Biometrika)

(iii) w(i) =
√

N(i), T = Tarone and Ware test

The tests of (ii) and (iii) are motivated by examining the risk set size and giving weights to
tables according to the risk set sizes. In general, the log-rank test is more efficient under
the proportional hazards model, and (ii) and (iii) are more efficient under other classes of
models.

Reference Tarone and Ware, Biometrika, (1977).

For example, if the underlying model is the PHM

λB(t) = λA(t)eβ





H0 : β = 0(λA(t) = λB(t))
H1 = β 6= 0

or
H1 = β > 0

or
H1 = β < 0

The log-rank test is the most powerful test. Another example, if the relative hazard is large
at earlier times, then Gehan’s test might be more powerful than (i). When cross-over in
hazards occurs, the weighted or unweighted log-rank tests would not be good choices in
general.

Gehan’s test is closely related to the Wilcoxon test. It can be regarded as a generalization
of the Wilcoxon test.
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4.5 Wilcoxon Test for Complete Data

Data from treatment A = t1, . . . , tm ∼ SA

treatment B = z1, . . . , zn ∼ SB

Here t1, . . . , tm, z1, . . . , zn are failure times (uncensored). H0 : SA = SB.

The general idea is the following. Pool the data from treatments A and B. Rank the
data. Calculate the sum of ranks from treatment-A data. If the rank-sum is large or small,
then reject the null hypothesis.

Example A : 3, 7, 2 m = 3
B : 1, 4, n = 2

Ordered data (1, 2, 3, 4, 7 )
Ranks for 3, 7, 2 are (3, 5, 2)
Rank sum is 3 + 5 + 2 = 10. Is “10” large or small? We will discuss it.

Order the pooled data and define

γi = rank of ti, t = 1, . . . ,m

R =
m∑

i=1

γi

Under H0 : SA = SB,

1st rank last rank

↙ ↙

E0[R] = m

(
1 + (m + n)

2

)

Var0(R) =
mn(m + n + 1)

12
from permutation theory

Testing statistics is

W =
R− E0(R)√

Var0(R)
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When m,n are small ⇒ Use small sample tables. Reject H0 when W is far away from 0.

When m,n are large, use approximation result

W =
R− m(m+n+1)

2√
mn(m+n+1)

12

approx∼ N(0, 1)

Reject H0 when W is very different from 0 ( that is, R is very large or small).

To use the Wilcoxon test, the usual underlying models we have in mind are likely to be

• location-shift model

fA(t) = fB(t− θ)

• Stochastic ordering model

SA(t) ≥ SB(t) or SA(t) ≤ SB(t)

• Proportional hazards model
λB(t) = λA(t)eβ

4.6 Extension of Wilcoxon Test: Gehan’s Test for Right Censored
Data

For complete and continuous data, an alternative way to write the rank sum is

R =
m(m + n + 1)

2
+

1

2
U (∗)

and U is defined as

U =
m∑

i=1

n∑

j=1

Uij where Uij =





1 if ti > zj

0 if ti = zj

−1 if ti < zj

The statistic “U” is also called the Mann-Whitney statistic. Reject H0 if U is away from 0.
Gehan (Biometrika, 1965) modified Uij subject to right censored data.

To see the validity of (*), consider the condition when we have the total separation

t(1) < t(2) < . . . < t(m) < z(1) < . . . < z(n),
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then R = m(m+1)
2

. For every interchange of a consecutive (t, z) pair, R is increased by 1, and
the number of interchanges is

m∑

i=1

n∑

j=1

1

2
[Uij + 1].

Thus

R =
m(m + 1)

2
+

∑

i

∑

j

1

2
[Uij + 1]

=
m(m + 1)

2
+

m · n
2

+
1

2

∑

i

∑

j

Uij

=
m(m + n + 1)

2
+

1

2
U.

Now the data are

A-sample (y1, δ1), . . . , (ym, δm)
B-sample (y∗1, δ

∗
1), . . . , (y

∗
n, δ

∗
n) δi, δ

∗
j = censoring indicator.

Define

Uij =





1 if ti > zj

0 either “ti = zj” or “don’t know”
−1 if ti < zj

Note: ti and zj may not be observable!

The Gehan statistic is

G =
∑

i

∑

j

Uij
approx∼ N(0, σ2) Reject H0 if G is large or small

Example
A = 3, 5, 7, 9+, 18
B = 12, 19, 20, 20+, 33+
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G =
∑

i

∑

j
Uij

i = 1,
5∑

j=1
U1j = (−1) + (−1) + (−1) + (−1) + (−1) = −5

i = 2,
5∑

j=1
U2j = −5

i = 3,
5∑

j=1
U3j = −5

i = 4,
5∑

j=1
u4j = 0

i = 5,
5∑

j=1
Uij = 1 + (−1) + (−1) + (−1) + (−1) = −3

The Gehan statistic is
G = −5 − 5 − 5 + 0 − 3 = −18.

To get p-value, we need to estimate σ2. Gehan provided a complicated formula (Biometrika,
1965). For your calculation, just use the “weighted” formula (ii) introduced earlier. Because

G = −∑

(i)

N(i)

[
d(i) − E0

(
d(i)

)]

= −∑

(i)

N(i)

[
d(i) −

mD(i)
nA(i)

N(i)

]
,

we may derive the variance of the Gehan statistic by the previous formula. To see the
equivalence, note that

G =
∑

yi censored

∑

j∈Ri

Uij

+
∑
y(i)

∑

j∈R(i)

Uij
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= I + II

Clearly, I = 0. For II, if the failure at y(i) is from group “A”, then the score is

− {(N(i) − nA(i)
)− (mD(i)

− d(i))}
↘

# of failure at y(i) from “B”

and nA(i)
− d(i) otherwise. Thus the total score evaluated y(i) is

−
[
d(i)

(
N(i) − nA(i) −mD(i) + d(i)

)
−

(
mD(i) − d(i)

) (
nA(i) − d(i)

)]

= −
[
d(i)N(i) −mD(i)nA(i)

]
.

Thus

G = −∑
y(i)

[
d(i)N(i) −mD(i)

nA(i)

]

= −∑

(i)

N(i)

[
d(i) −

mD(i)
nA(i)

N(i)

]
,

and

G√
∑

(i)

N2
(i)

nA(i)
nB(i)

mD(i)
mD̄(i)

N2
(i)

(N(i)−1)

approx
∼

n large
N(0, 1)
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5 Truncation Models

Statistical techniques for truncated data have been integrated into survival analysis in last
two decades. Truncation is a sampling mechanism for observing incomplete data where a
random variable is observable only if it falls in a certain region (untruncated region). When
the random variable of interest falls outside the region, the information about the variable
is lost and therefore excluded from the data set. Truncated survival data typically arise in
observational studies.

5.1 Left-Truncation and Length-Biased Sampling

When studying the natural history of a disease, an incident cohort is defined as a group
of subjects whose initial events are randomly sampled from a pre-determined calendar time
interval. The subjects are followed for detecting the occurrence of the failure event until
loss to follow-up or end-of-study. The data collected from an incident cohort are the typical
right-censored data. The observed data include observations (y, δ)s, where y = min(t, c),
δ = I(t ≤ c), t and c are the failure and censoring times.

When the failure times are long, the incident cohort design is inefficient for natural
history studies because it usually takes a long follow-up time to observe enough failure
events. In contrast, a prevalent sampling design which draws samples from a disease prevalent
population is more focused and thus more practical in real studies. The prevalent sample is
formed by subjects whose initial events had occurred but have not experienced the failure
event at the time of recruitment, τ . The prevalent sampling can be described by one of the
following two models:

I. Define T as the time from the disease incidence to the failure event for subjects who
became diseased in a calendar time interval [a, b), where a < 0. The variable W is the
time from the disease incidence to the (potential) recruitment time. The variable W is
called left truncation time. Under the left truncation sampling, the probability density
of the observed (w, t) is the population probability density of (w, t) given T ≥ W :

ps(w, t) = p(w, t|T ≥ W ) .

Without further complication of censoring, the observations include (w, t)s, where

Let g and f respectively be the marginal density function of W and T . Assume the
time to failure, T , is independent of when the initiating event occurs, then it implies T
and W are independent of each other, forming the non-informative truncation model.
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II. Assume the initial events occur over the calendar time as a nonstationary Poisson
process with intensity λ(u), u ∈ [0, τ ], and the distribution of T is independent of u,
when the initial event occurs. Define the pdf λ0(u) = λ(u)/

∫ τ
0 λ(v)dv as the normalized

λ(t) in [0, τ ]. Conditioning on the number of initial events occurring in [0, τ ], the event
times u’s are order statistics of iid random variables with pdf g. Pick an event time U
randomly from U ’s and define W = τ − U , then the pdf of W is g(w) = λ0(τ − w).

Example. Suppose a random sample of women with breast cancer (b.c.) are recruited
for observation of survival. The failure time T is defined as the time from onset of b.c. to
death and f is the probability density function of T . Suppose the time of recruitment, τ , is a
fixed calendar time. Then, g can be interpreted as the the rate of occurrence of b.c. over time.

5.2 Left-Truncation and Length-Biased Sampling

The joint density of the observed (w, t) can then be expressed as

ps(w, t) =
g(w)f(t)I(t ≥ w)

P(T ≥ W )

=
g(w)f(t)I(t ≥ w)∫

S(u)g(u)du
. (1)

In the situation that g is uniformly distributed then the observed t follows the length-
biased distribution. Length-biased sampling could arise in many epidemiological studies
when survival data are collected from a disease population. In the breast cancer (b.c.)
example, assume (i) the rate of occurrence of b.c. remains constant over time, and (ii) the
density function of the time from b.c. to death, f , is independent of when b.c. occurred.
Conditions (i) and (ii) together are referred to as the equilibrium condition. The equilibrium
condition typically holds for so-called ‘stable diseases’. When the equilibrium condition is
satisfied, we observe length-biased failure time which has the following density function:

ps(t) =
∫

ps(w, t)dw = tf(t)/µ , (2)

where µ = E[T ] is the mean failure time. In general, treating length-biased data as the ‘usual
data’ would lead to biased analytical results because of the bias of data. When length-biased
data are encountered, we should use bias-adjusted methods for analysis; see Wang (1997,
‘length-bias’, Encyclop. of Biostat.) and references therein. Although statistical methods
can be formulated for length-biased observations, Assumption (i) is required for validating
the length-biased model as well as the corresponding methods (Vardi, 1982 Annal. Stat.;
Wang, 1996, Biometrika).
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Let I(u) represent the disease incidence (occurrence) rate at the calendar time u and
Su the survival function of T for those patients whose disease was initiated at u. Then, the
disease prevalence rate at the calendar time τ can be obtained as P (τ) =

∫ τ
−∞ I(u)Su(τ−u)du.

When the equilibrium condition is satisfied, the incidence rate is a constant (I(u) = I0) and
the survival function is independent of u (Su = S), and

P (τ) = I0

∫ τ

−∞
S(τ − u)du = I0

∫ ∞

0
S(u)du = I0 × µ

is independent of τ . Thus, let P (τ) = P0 and we derive

P0 = I0 × µ (Prevalence = Incidence × duration)) .

Length-biased data can be viewed as a special case of left truncated data, since the
conditional density of the observed t given w is

f(t)I(t ≥ w)/S(w), (3)

which corresponds to the density function of left truncated failure time. By viewing length-
biased data as left truncated data, we next consider how to analyze left truncated data in a
general setting. It is important to indicate that the validity of the truncated density in (3)
depends only on Assumption (ii) and not on Assumption (i).

5.3 Left Truncated Data: Product-Limit Estimator

Suppose n individuals are recruited into a propective follow-up study by prevalent sampling.
Suppose the observed data (w1, t1), . . . , (wn, tn) are independent and identically distributed
observations. Let t(1) < . . . < t(J) be the distinct and ordered values of t1, . . . , tn. Define

R(j) = {i : wi ≤ t(j) ≤ ti}

d(j) = Number of failures at t(j)

N(j) = Number of individuals in R(j)

λ(j) = f(t(j))/S(t−(j))

Product-limit estimator

For t(i−1) ≤ t < t(i), recall

S(t) ≈ Pr(T ≥ t(2))

Pr(T ≥ t(1))
· Pr(T ≥ t(3))

Pr(T ≥ t(2))
. . .

P r(T ≥ t(i))

Pr(T ≥ t(i−1))
.
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Now estimate
Pr(T≥t(j+1))

Pr(T≥t(j))
by

N(j)−d(j)

N(j)
, j = 1, 2, . . . , i − 1. The product-limit estimator is

thus

Ŝ(t) =

(
1− d(1)

N(1)

) (
1− d(2)

N(2)

)
. . .

(
1− d(i−1)

N(i−1)

)

=
∏

t(j) ≤ t

(
1− d(j)

N(j)

)

Example Data: (4, 5), (0, 4), (5, 7), (1, 2), (2, 8), (1, 5)

failure times 2 4 5 7 8
d(i) 1 1 2 1 1
N(i) 4 4 4 2 1

R(1) = {(0, 4), (1, 2), (2, 8), (1, 5)}

R(2) = {(4, 5), (0, 4), (2, 8), (1, 5)}

. . . . . . . . .

The truncation product-limit estimate is thus

Ŝ(1) = 1

Ŝ(2) =
(
1− 1

4

)
=

3

4

Ŝ(4) =
(
1− 1

4

) (
1− 1

4

)
=

3

4
· 3

4

Ŝ(5) =
(
1− 1

4

) (
1− 1

4

) (
1− 2

4

)
=

3

4
· 3

4
· 2

4

Note: Unlike right censored data, risk sets usually are NOT nested!

Example Data: (4, 5), (0, 1+), (5, 7), (1, 2), (2, 4+), (1, 5)
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failure times 2 5 7
d(i) 1 2 1
N(i) 3 3 1

R(1) = {(1, 2), (2, 4+), (1, 5)}

R(2) = {(4, 5), (5, 7), (1, 5)}

R(3) = {(5, 7)}

. . . . . . . . .

The truncation product-limit estimate is thus

Ŝ(1) = 1

Ŝ(2) =
(
1− 1

3

)
=

2

3

Ŝ(5) =
(
1− 1

3

) (
1− 2

3

)
=

2

3
· 1

3

Ŝ(7) =
(
1− 1

3

) (
1− 2

3

) (
1− 1

1

)
= 0

Note that the applicability of the product-limit estimator requires that the truncation
time wi be observable, and such a requirement might not be met in some applications.

Remarks: For left truncated and right censored data,

• modified Greenwoods Formula still holds for the estimation of the asymptotic
variance of the product-limit estimator - just use the revised risk sets.

• modified partial likelihood method still holds for the estimation of β in the pro-
portional hazards model - just use the revised risk sets.

• modified log-rank tests still hold for testing the difference between two groups -
just use the revised risk sets.

Essentially, censoring and truncation share some significant similarities in statistical anal-
ysis - especially, the similarities in the ‘risk set methods’. Nevertheless, regardless of the
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similarities, there still exist significant dissimilarities (i.e., different statistical properties)
that are not emphasized in this course. References include Woodroofe (1985, Ann. Statist.),
Wang et al. (1986, Ann. Statist.), Tsai et al. (1987, Biometrika), Keiding and Gill (1988,
Ann. Statist.) and Wang (1989, 1991, JASA).

5.4 Right Truncation

Suppose that a certain disease can be characterized by an initial event and a failure event.
An example is the study of the natural history of Human Immunodeficiency Virus (HIV)
and Acquired Immunodeficiency Syndrome (AIDS), where the HIV-infection is the initial
event and the AIDS diagnosis is the failure event. Let X denote the calendar time of the
initial event and T the time from the initial event to the failure event. Then an observation
(x, t) is observed only if x + t ≤ τ , where τ is the closing date of data collection. This is
an example of right truncation: the failure time T is observed only when T ≤ τ − X. Let
W = τ −X. Then W is called the truncation time.

Product-Limit Estimator

Suppose the observed observations {(Wi, Ti) : Ti ≤ Wi, i = 1, . . . , n} are independent and
identically distributed. Let t(1) < . . . < t(J) be the distinct and ordered values of t1, . . . , tn.
A practical constraint in nonparametric estimation is that a nonparametric distribution
estimator cannot estimate the distribution function beyond the largest observed t(J). Thus,
what can be estimated is the conditional distribution function F ∗(t) = F (t)/F (t(J)) for
t ≤ t(J). Define

R(j) = {i : ti ≤ t(j) ≤ wi}

d(j) = Number of failures at t(j)

N(j) = Number of individuals in R(j)

λ(j) = f(t(j))/F (t(j))

For t ≤ t(J), the product-limit estimator is

F̂ ∗(t) =
∏

t(j) > t

(
1− d(j)

N(j)

)
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