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Summary

For the purpose of learning Survival Analysis, we review some properties of exponential distri-

butions. Then we discuss some extensions of the exponential distribution. These extensions

include the Weibull distribution/extreme value distributions; and the piecewise exponential dis-

tributions.

Since lifetimes are almost always non-negative, the normal model/distribution may not be appropri-

ate. An easy to use, positive distribution is the exponential distribution. To a less extend, exponential

distributions to the survival analysis is like normal distributions to the linear model/ANOVA.

Piecewise exponential distribution is also used to bridge/connect the parametric and nonparametric

method/model, with the view that when the number of pieces grows to infinite (along with the sample

size) the parametric model becomes the non-parametric model.

1 Exponential distribution, Weibull and Extreme Value Distribution

1. (Definition) Let X be a random variable. We say X ∼ exp(λ), we mean P (X > t) = P (X ≥ t) = e−λt

for t > 0, where λ > 0 is a parameter (called hazard parameter).

[Some other books use a different parameter. The best way to identify which parameter a particular

book is using is to ask what is the mean value of the r.v. in terms of the parameter. In our definition,

mean = 1/λ. Some books use the parameter β = mean. We shall NOT use the mean parameter.]

2. How can you get [generate] a sample of iid (standard) exponential random variables from a sample

of iid uniform(0,1) random variables?

2.5. If X is exp(λ) then c×X, (c > 0) is exp( ? ).

3. (Definition) If X is exp(1) then X1/β/λ is called a Weibull(λ, β) random variable. (notice this

definition is same as Miller, Kalbfleish & Prentice, Cox & Oakes, ABGK but different from software R,

Allison, and Klein & Moeschberger and some other text books.)

In the above, β > 0 is called the shape parameter, λ > 0 is called the scale parameter (of the

Weibull).

Therefore, if X is exp(1) then (X)p is Weibull(?,?) for (p > 0).

Find the survival function of an Weibull r.v.



4. (Definition) If X is exp(1) then log(X) is called a (standard) extreme value random variable. Its

distribution is called an extreme value distribution.

E log(X) =?? (not 0). V ar log(X) =

5. Define a two-parameter family of general extreme value random variable/distribution as: µ +

σ log(X). Here µ and σ > 0 are two parameters. (notice µ is not the mean since mean of logX is not

zero. Similarly σ is not the standard deviation. They are called location and scale parameters.)

Therefore, if X is exp(1) then log[(cX)p] is ..?...

If Y is Weibull(λ, β) then log Y is ..?....

2 Hazard and Cumulative Hazard function

Definition: The hazard function h(t) (or sometimes denote by λ(t)), of a general r.v. X (that have a

density function), is

h(t) =
f(t)

1− F (t−)
.

The minus in the denominator F is superfluous here but will be useful later when we talk about discrete

r.v.s.

For X that is exp(λ), the hazard function h(t) is a constant: h(t) ≡ λ, (memoryless, forever young).

Prove that a r.v. is memoryless if and only if its hazard function is constant.

Definition: Cumulative hazard function H(t) or Λ(t) is:

H(t) =

∫ t

−∞
h(s)ds =

∫ t

−∞

dF (s)

1− F (s−)
.

Notice the last expression is also valid even for discrete CDF F (t). So, we can still have a cumulative

hazard function when the CDF of a random variable is discrete.

The intuitive meaning of the hazard h(t). We notice

h(t) = lim
ε↓0

P (t ≤ X < t+ ε|X ≥ t)/ε

So h(x)dx is a conditional probability: P (x ≤ X < x+ dx|X ≥ x).

5. The relation between density f(t), cdf F (t) and hazard h(t), cumulative hazard H(t).

For continuous cdf F (t), we have H(t) = − log[1− F (t)]. Thus 1− F (t) = e−H(t).



For (purely) discrete cdf F (t) we can also define H(t):

H(t) =
∑
s≤t

∆F (s)

1− F (s−)
;

where ∆F (t) = F (t+)− F (t−), then we can show the following relation holds (exercise)

1− F (t) =
∏
s≤t

(1−∆H(s)) .

For partly discrete, partly continuous distribution F (t), there is also a pair of formula (which are

applicable to all cases) but let us not go there. See Gill 1980

6. If X1 and X2 are two independent exponential r.v.s (with parameters λ1 and λ2) then min(X1, X2)

is also an exp r.v. (with parameter λ1 + λ2).

Generalizations. (If Y1 and Y2 are independent general r.v.s with hazard functions h1(t) and h2(t),

then min(Y1, Y2) has hazard function .......)

7. Example of using memoryless: The expectation of order statistics from an independent exponen-

tial sample. (hint: Find the expectation of the minimum first, and then use memoryless).

8. Given an i.i.d. exp(λ) sample the MLE of the hazard, is ......

Do you know the distribution of the MLEs?

9. The Fisher information for λ in the sample is .....

9.5 The MLE of two parameters in the weibull distribution is implicit

10. In general, for any distribution, we have, based on an iid sample x1, · · ·xn

log lik =
n∑
i=1

[log h(xi)−H(xi)] .

Generalize this to right censored case.

If (Yi, δi) i = 1, · · · , n is a sample of right censored observations from a general distribution, (Yi =

min(Xi, Ci), with Xi iid) the log likelihood is

log lik(Y δ) =
n∑
i=1

[δi log h(Yi)−H(Yi)] .

In the above, if Xi is exponential, then h and H simplify to ...

The exponential rv view of any positive rv: any positive random variable can be thought

of as the result of a (monotone increasing) transformation of an exponential random variable. Or an

exponential rv under a crazy clock. ....And that is via the hazard function clock.....



3 Piecewise Exponential random variable

12. Piecewise exponential distribution: its definition and how to estimate the parameters from a

sample.

Definition: If a random variable Y ’s hazard function, hY (t), is a piecewise constant function, then

Y is called a piecewise exponential random variable. We suppose the boundary or the cut points of the

pieces are given (non-random).

As an example a three piece exponential r.v. with cut points 0 < T1 < T2 < T3 = ∞ has hazard

function

h(t) = λ1I[t < T1] + λ2I[T1 ≤ t < T2] + λ3I[T2 ≤ t]

Its cumulative hazard is H(t) =??

The log likelihood function based on an iid sample of Xi from a piecewise exponential distribution

can be written down, using h(t) and H(t).

Theorem 1 Based on a sample of n iid observations from a piecewise exponential distribution, the

MLE of hazard of the ith piece (for the interval [Ti−1, Ti)) is

λ̂i =
#{xj ∈ [Ti−1, Ti)}∑n

j=1[min(Ti, xj)− Ti−1]+
where [t]+ = max(0, t) .

The denominator in the above is identical to
∑
j(xj −Ti−1)I[Ti−1 ≤ xj ≤ Ti] +

∑
j(Ti−Ti−1)I[xj ≥ Ti].

9.5. Re-work the above with right censored observations.

Corollary If the sample in the above theorem is subject to right censoring, then the MLE λ̂i

only needs modification in the numerator: replace the numerator in the above by #{uncensored xj ∈

[Ti−1, Ti)}.

Define R(t) =
∑
I[xi ≥ t] then the denominator above is approximately equal to R(Ti−1)(Ti−Ti−1).

You see the connection to Nelson-Aalen estimator here.

Theorem 2 The (approximate) variance of the MLE in the above theorem λ̂i is (by using Fisher

information for MLE theory)

λ̂2
i∑

j δjI[Ti−1 ≤ xj < Ti]
.

and λ̂i is asymptotically independent of λ̂j for i 6= j.

Notice the estimator λ̂i for different i can be considered independent, at least asymptotically. It

is easy to verify that the information matrix for (λ̂1, · · · , λ̂k) is diagonal, therefore the (approximate)



variance-covariance matrix is also diagonal.

Although this (the variance-covariance calculation) is obtained under the assumption of piecewise

exponential population, it is in fact (approx.) true for a random sample from any distribution. [since

a piecewise exponential can approximate any distribution] And it is in fact un-correlated for finite

samples.

From here you get the Variance estimator for the Nelson-Aalen estimator.

Because the Nelson-Aalen estimator, Ĥ(t) = Λ̂(t), is (approx.) equal to
∑
T≤t λ̂i(Ti − Ti−1). The

variance of a sum is the sum of the variances (uncorrelated terms) and (please verify)

V ar(λ̂i(Ti − Ti−1)) ≈ #{xj ∈ [Ti−1, Ti); δj = 1}
R(Ti−1)2

Therefore

V ar(Λ̂(t)) ≈
∑
T≤t

(Ti − Ti−1)2V ar(λ̂) =??

10a. Given any continuous r.v. X with cdf F (t), what transformation convert it into exp(1)?

10b. Any continuous r.v. can be thought of as obtained by a transformation of an exponential r.v.

10c. Any positive (continuous?) r.v. can be viewed as an exp() r.v. but with time-changing hazard

rate. (instead of constant hazard) Crazy Clock!

11. The best rank test for testing the equality of 2 samples of exp data ....... Savage test. Since the

rank do not change under monotone increasing transformation....

Parametric Regression Models

There are two approaches to a regression model with exponential distribution.

12. Exponential regression model, MLE method.

The first approach is the generalized linear model approach. Model Assumption (postulates) Xi are

independent and

Xi ∼ exp(λi) where log(λi) = α+ βzi i = 1, 2, · · ·n.

We observe a sample of (Xi, zi) for i = 1, · · · , n and need to estimate α, β. Xi is the survival times, the

response, zi the covariate(s).

Let Zi ∼ exp(1), then Xi ∼ Zi
λi

.

In terms of hazard, This approach try to model the (log) hazard as a linear function.



The second approach is the log-linear model approach. Equivalent/alternative modeling with log

transformation and extreme value distribution.

logXi = − log λi + logZi = −(α+ βzi) + logZi

where logZi = εi is standard extreme value r.v.

So in this approach, the covariate zi affects the location parameter of logXi which is assumed to be

an extreme valued distribution.

13. Generalization: Weibull regression i.e. Xi ∼ Weibull(b, λi). This can be achieved by adding a

scale parameter in the above extreme value regression.

logXi = − log λi + σ logZi = −(α+ βzi) + σ logZi

We note σ = 1/b.

14. The estimation of α, β and σ can be obtained by the MLE method. The MLE do not have an

easy expression. But are easily obtained using numerical maximization. This can all be done in SAS or

R. (code examples?)

15. Generalization (project): replace Zi above by a piecewise exponential random variable. (prob-

lem: there is no ‘standard’ piecewise exponential; and we might as well take/replace (the exp of)

−α + σ logZi as a piecewise exponential) (This is a project topic) How MLE/LR test of β works out

here?

If we generalize the log linear model so that the error is a general, unknown distribution, we get the

AFT model.

If we generalize the regression the hazard way, then the responses are considered as the result of a

unknown transformation of the Xi from the exponential regression model.

Exponential random variables and Poisson process (this section can
be omitted at first reading)

16. The relation between exp(λ) distributions and Poisson processes. (should be covered in Sta624, the

stochastic process)

17. Notations of the Poisson process: Nλ(t).



Let

Nλ(t)− λ× t = Nλ(t)−
∫ t

0
λds = M(t) .

The expectation of M(t) is zero for any t, in fact, M(t) is a so called martingale.

Problems

1) Plot the hazard function h(t) for

a. N(µ, σ) distributions with several different µ’s and σ’s.

b. log-normal distributions with several location/scale parameters.

c. Gamma distributions.

2). Use a discrete distribution (with 5-point mass) to verify the discrete formula connecting the

CDF (F) and cumulative hazard function (H).

3). Work out the “?”s and “· · ·”s in the handout (on first page).

4). In computing the sum of the Savage scores, we can do a few change:

(a). change the scores to centered version:

ani = 1− (
1

N
+ · · ·+ 1

N − i+ 1
).

(b). Originally we need to sum those scores correspond to sample 1. We could sum this differently

as follows: when the score ani correspond to a sample 1 obs. we sum 1−R1 × ( 1
N−i+1); when the score

anj correspond to a sample 2 obs. we sum −R1 × ( 1
N−j+1). Convince yourself that the resulting sum

will be the same.

5). Write the sum as
∫

(dN1(t)−R1(t) · (d[N1(t)+N2(t)]
R1(t)+R2(t) )

6). I have written an R code for generating random numbers that follow the 2 piece, piecewise

exponential distribution. Generalize it to k pieces.



Why proportional (cumulative) hazard is a point-wise property and shift model in probability is an

interval property.

To compare H1(t0) to H2(t0), we can immediately find, for example, H1(t0) = η ∗H2(t0). Here η is

a parameter. This only involve the H1 and H2 value at one point: t0.

To model F1(t0) shift to F2(t0), if we use the model F1(t0) = F2(t0− η), then this not only involve

the F2(t0), it involves all F2 values from F2(t0) to F2(t0 − η).



For the right censored data: (X1, δ1), (X2, δ2), · · · , (Xn, δn) define

N(t) =
n∑
i=1

δiI[xi≤t]

This counts the number of observed failures up to time t, whereas dN(t) = ∆N(t) = number of observed

failures at time t.

Define also

R(t) =
n∑
i=1

I[xi≥t]

This counts the number of subjects alive at time t. In medical term, those ‘at risk’ at time t.

Nelson-Aalen estimator is

Λ̂(t) =
∑
s≤t

dN(s)

R(s)

We also have (from the computation of information with piecewise exponential random variables)

V ar(Λ̂(t)) ≈
∑
s≤t

dN(s)

R(s)2
.

The Kaplan-Meier estimator is

1− F̂ (t) =
∏
s≤t

(
1− dN(s)

R(s)

)
.

The variance of Kaplan-Meier estimator (Greenwood formula) can be derived as follows.

V ar(F̂ (t)) = V ar(1− F̂ (t)) ≈ V ar(e−Λ̂(t))

since for continuous CDF we have 1− F (t) = e−Λ(t). Using the delta method, we have

V ar(e−Λ̂(t)) ≈ [e−Λ̂(t)]2V ar(Λ̂(t))

Finally, we get the Greenwood formula by replace e−Λ̂(t) back with 1− F̂ (t), and variance estimator

of Nelson-Aalen

V ar(F̂ (t)) ≈ [1− F̂ (t)]2
∑
s≤t

dN(s)

R(s)[R(s)− dN(s)]
,

The only point is that in the denominator we use R(R−dN) instead of R2. This can be explained with

the special case of binomial variance, with no censoring. (this is only a finite sample adjustment).



Next is a discussion of the ‘weighted average’ in Cox model.

Given k independent exponential random variables Xi with hazards λ1, · · · , λk.

We have

P (the failed one is Xi|one failed out of k X ′s) =
λi∑k
j=1 λj

(1)

i.e.

P (Xi = t| min
1≤j≤k

Xj = t) =
λi∑k
j=1 λj

Now imaging the random variables Xi carry with them a value zi, the covariate.

Then the conditional expectation of z value for the failed one, given there is one fail among the k is

k∑
i=1

ziλi∑k
j=1 λj

Or ∑k
i=1 ziλi∑k
j=1 λj

.

If we identify λi with exp(βzi), this is the term in the Partial likelihood.

∑k
i=1 zi exp(βzi)∑k
j=1 exp(βzj)

.

So, at least the score function of the Cox partial likelihood has mean zero. (each term as mean zero,

at true β.) Because it is in a form of ‘observed’ - ‘expected’.

Also, using this we see the Cox partial likelihood is the product of many conditional probabilities,

as in (1). So it is not a ‘real’ likelihood.



Notes on piecewise exponential regression: (This is a topic not well developed.)

There is an example in Allison’s book. In it, he cut the time interval for each obs. Ti into pieces

defined by intervals a0 < a1 < a2 < ...

For a genuine piecewise exponential regression, we should cut the time interval for the error variable,

Zi or logZi, not the responses Ti.

AFT model: Ti = exp(−βxi)Zi

where Zi is a standard exp, or exp(1) r.v. After taking log, we have

log(Ti) = −βxi + logZi

To model logZi or Zi as iid piecewise exponential we should divide the time interval for the variable

Zi to 0 = a0 < a1 < a2....

These cut intervals in terms of the variable Ti is different:

So, for Ti we need to cut ( denote φi = exp(−βxi) )

φia0 < φia1 < φia2 < φia3 < ...

If a0 = 0 then the first is always zero.

This (β dependent cut) could be done iteratively. [first estimate β, then refine the cut, ie. it lead

to new cut, then update the β estimate with this new cut,....]

This way every subject has its own set of intervals.

This should lead to the AFT model with general error distribution, at least the estimator of beta

should be comparable.

The hazard of AFT model: the hazard for Ti is seen given as

hi(t) = h0(tφi)φi

Question:

(1) understand what SAS is doing in the example.

(2) How do you implement the piecewise exp regression in R?

(3) use a cut that is different for each subject and is dependent on βxi.

Can R function survreg() take (start, stop, event) type input? No.


