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Summary

For the purpose of learning Survival Analysis, we need to review some properties and some exten-
sions of the exponential distribution. These extensions include the extreme value distribution,
Weibull distribution and piece-wise exponential distribution.

Since lifetimes are almost always non-negative, the normal model/distribution may not be ap-
propriate. An easy-to-use distribution is the exponential distribution. Exponential distribution
to the survival analysis is sort of like normal distribution to the ANOVA.

Piecewise exponential distribution is the most flexible among the three, since we may have

many pieces and thus many parameters. It is also used to bridge/connect the parametric and

nonparametric method: when the number of pieces/parameters grows to infinite, the parametric

model becomes a non-parametric model.

1 Exponential distribution, Extreme Value and Weibull Distribution

1. Definition If a random variable X satisfy

P (X > t) = P (X ≥ t) = e−λt; for all t > 0,

then we say X is exponential, denote this by X ∼ exp(λ).

In the above λ > 0 is a parameter (called hazard parameter). When λ = 1 we call X the standard

exponential random variable. [forget about the mean parameter]

Exercise: How can you get a sample of iid (standard) exponential random variables from a sample

of iid uniform(0,1) random variables?

Exercise: If X is exp(λ) then c×X, (c > 0) is [?].

3. Definition If X is exp(1) then log(X) is called a (standard) extreme value random vari-

able/distribution.

E log(X) =??.

Definition: Define a general extreme value random variable as: µ + σ log(X). Here µ and σ are

two parameters.

Notice µ is not the mean since mean of logX is not zero. Similarly σ is not the standard deviation.

They are called location and scale parameters.

5. Definition If X is exp(1) then X1/β/λ is called a Weibull(λ, β) random variable.

Notice this definition is the same as Miller, Kalbfleish & Prentice, Cox & Oakes, ABGK but different

from software R, Allison, and Klein & Moeschberger and some other text books. The difference lies in



the transformation

X1/β

λ
vs

(
X

λ

)1/β

.

The two definitions are equivalent but when you use software or quote other books, be sure to check

the definition.

In the above definition, β > 0 is called the shape parameter, and λ > 0 is called the scale parameter.

Exercise: Therefore, if X is exp(1) then (X)p is Weibull(?,?) for (p > 0).

Therefore, if X is exp(1) then log[(cX)p] is ..?...

If Y is Weibull(λ, β) then log Y is ..?....

2 Hazard and Cumulative Hazard function

To define the piecewise exponential distribution, we need to first define the hazard function.

Definition: The hazard function h(t) (or sometimes denote by λ(t)), of a general r.v. Y (well, it

needs to have density function f(t)), is

h(t) =
f(t)

1− F (t−)
.

The minus in the denominator F is superfluous here but will be useful later when we talk about discrete

r.v.s.

For X that is exp(λ), the hazard function h(t) is a constant: h(t) ≡ λ, (this is memoryless, or forever

young).

Definition: Cumulative hazard function H(t) or Λ(t) of a general r.v. Y is:

H(t) =

∫ t

−∞
h(s)ds =

∫ t

−∞

dF (s)

1− F (s−)
.

Notice the last expression is also valid even for discrete CDF F (t). So, we can still have cumulative

hazard function when the CDF of random variable Y is discrete.

The intuitive meaning of the hazard h(t). We notice

h(t) = lim
ε↓0

P (t ≤ Y < t+ ε|Y ≥ t)/ε

So h(t)dt is a conditional probability.



2.1 The relation between density f(t), cdf F (t) and hazard h(t), cumulative hazard
H(t)

For continuous cdf F (t), we have H(t) = − log[1− F (t)]. Thus 1− F (t) = e−H(t).

For (purely) discrete cdf F (t) we can also define H(t):

H(t) =
∑
s≤t

∆F (s)

1− F (s−)
;

where ∆F (t) = F (t+)− F (t−). Then we can show the following relation holds

1− F (t) =
∏
s≤t

(1−∆H(s)) .

Exercise: If X1 and X2 are two independent exponential r.v.s (with parameter λ1 and λ2) then

min(X1, X2) is also an exp r.v. (with parameter λ1 + λ2).

Generalizations. (If Y1 and Y2 are independent general r.v.s with hazard functions h1(t) and h2(t),

then min(Y1, Y2) has hazard function .......)

(notice the two different ways of transform, both produce a new r.v.: a. transform on the r.v. b.

transform on the hazard, or cumulative hazard.)

7. The expectation of order statistics from an independent exponential sample. (hint: Find the

expectation of the minimum first).

2.2 Likelihood Function

Given an i.i.d. exp(λ) sample the MLE of the hazard/mean are ......

Do you know the distribution of the MLEs?

9. The Fisher information for λ in the sample is .....

10. In general, for any distribution, we have, based on an iid sample x1, · · ·xn with density f , hazard

h, cumulative hazard H,

log lik(x1, · · · , xn) =
n∑
i=1

[log h(xi)−H(xi)] =
n∑
i=1

log f(xi)

Generalize this to right censored case.

If (Yi, δi) i = 1, · · · , n is a sample of right censored observations from a general distribution, (Yi =

min(Xi, Ci), with Xi iid from density f , hazard h, cumulative hazard H) the log likelihood is

log lik(Y1, δ1 · · ·Ynδn) =
n∑
i=1

[δi log h(Yi)−H(Yi)] .



In the above, if Xi is exponential, then h and H simplify to ...

3 Piecewise Exponential random variable

Definition: If a random variable Y ’s hazard function, hY (t), is a piecewise constant function, then Y

is called a piecewise exponential random variable. We suppose the boundary or the cut points of the

pieces are given.

Exercise: how to estimate the parameters from a sample of piecewise exponential observations?

As an example a three piece (piecewise) exponential r.v. with cut points 0 < T1 < T2 < T3 =∞ has

hazard function

h(t) = λ1I[0 ≤ t < T1] + λ2I[T1 ≤ t < T2] + λ3I[T2 ≤ t] .

Its cumulative hazard is H(t) =??

The log likelihood function based on an iid sample of Xi from a piecewise exponential distribution

can be written down. This is much easier using hazard function.

Theorem Based on a sample of n iid observations from a piecewise exponential distribution, the

MLE of hazard of the ith piece (for the interval [Ti−1, Ti)) is

λ̂i =
#{xj ∈ [Ti−1, Ti)}∑n

j=1[min(Ti, xj)− Ti−1]+
where [t]+ = max(0, t) .

The denominator in the above is identical to
∑
j(xj − Ti−1)I[Ti−1≤xj≤Ti] +

∑
j(Ti − Ti−1)I[xj≥Ti].

9.5. Re-work the above theorem with right censored observations.

For right censored samples, the only modification is in the numerator: #{uncensored xj ∈ [Ti−1, Ti)}.

Define R(t) =
∑
Ixi≥t then the denominator above is approximately equal to R(Ti−1)(Ti − Ti−1).

You see the Nelson-Aalen estimator here.

Theorem The (approximate) variance of the MLE in the above theorem λ̂i is (by using Fisher

information for MLE theory)

λ̂2
i∑

j δjI[Ti−1≤xj<Ti]
.

and λ̂i is asymptotically independent of λ̂j for i 6= j.

This theorem can be proved by standard calculation.

Notice the estimator λ̂i for different i (or different pieces) can be considered independent, at least

asymptotically. It is easy to verify that the information matrix for λ̂1, · · · , λ̂k is diagonal, therefore the



(approximate) variance-covariance matrix is also diagonal.

Although this is obtained under the assumption of piecewise exponential population, it is in fact

true for a random sample from any distribution, asymptotically. [since a piecewise exponential can

approximate any distribution, sort of] And it is in fact un-correlated for finite samples.

From here you get the Variance estimator for the Nelson-Aalen estimator.

Because the Nelson-Aalen estimator, Ĥ(t) = Λ̂(t), is (approx.) equal to
∑
T≤t λ̂i(Ti − Ti−1). The

variance of a sum is the sum of the variances (uncorrelated terms) and (please verify)

V ar(λ̂i(Ti − Ti−1)) ≈ #{xj ∈ [Ti−1, Ti)}
R(Ti−1)2

Exercise: Given any continuous r.v. X with cdf F (t), what transformation convert it into exp(1)?

Exercise: Any continuous r.v. can be thought of as obtained by a transformation of an exponential

r.v.

10c. Any positive (continuous?) r.v. can be viewed as an exp() r.v. but with time-changing hazard

rate. (instead of constant hazard) Crazy Clock!

11. The best rank test for testing the equality of 2 samples of exp data ....... Savage test.

4 Weibull Regression Models

12. Exponential regression model, MLE method.

Model Assumption (postulates) Xi are independent and

Xi ∼ exp(λi) where log(λi) = α+ βzi i = 1, 2, · · ·n

We observe a sample of (Xi, zi) and need to estimate α, β. WHere Xi are the survival times, zi the

covariate(s).

Let Zi ∼ exp(1), then Xi ∼ Zi
λi

.

Equivalent/alternative modeling with log transformation and extreme value distribution.

logXi = − log λi + logZi = −(α+ βzi) + logZi

where logZi = εi is standard extreme value r.v.

13. Generalization: Weibull regression i.e. Xi ∼ Weibull(b, λi). This can be achieved by adding a

scale parameter in the above extreme value regression.

logXi = − log λi + σ logZi = −(α+ βzi) + σ logZi



We note σ = 1/b.

14. The estimation of α, β and σ can be obtained by the MLE methods, using numerical maximiza-

tion. This can all be done in SAS or R. (code examples?)

15. Generalization (project): replace Zi above by a piecewise exponential random variable. (prob-

lem: there is no ‘standard’ piecewise exponential; and we might as well take/replace (the exp of)

−α + σ logZi as a piecewise exponential) (This is a project topic) How MLE/LR test of β works out

here?

Please note the two different way of viewing the Weibull regression model: (1) after taking the log,

it is extreme value location regression. (2) without take transformation it is the scale parameter in the

weibull distribution modeled as regression.

5 Exponential random variables and Poisson process

16. The relation between exp(λ) distributions and a Poisson process. (should be covered in sta624, the

stochastic process)

17. Notations of the Poisson process: Nλ(t).

Let

Nλ(t)− λ× t = Nλ(t)−
∫ t

0
λds = M(t) .

The expectation of M(t) is zero for any t, in fact, M(t) is a so called martingale.



Some random Problems

0) Plot the hazard function h(t) for

a. N(µ, σ) distributions with several different µ’s and σ’s.

b. log-normal distributions with several location/scale parameters.

c. Gamma distributions.

1). Use a discrete distribution (with 5-point mass) to verify the discrete formula connecting the

CDF (F) and cumulative hazard function (H).

2). Work out the “?”s and “· · ·”s in the handout (on first page).

3). In computing the sum of the Savage scores, we can do a few change:

(a). change the scores to centered version:

ani = 1− (
1

N
+ · · ·+ 1

N − i+ 1
).

(b). Originally we need to sum those scores correspond to sample 1. We could sum this differently

as follows: when the score ani correspond to a sample 1 obs. we sum 1−R1 × ( 1
N−i+1); when the score

anj correspond to a sample 2 obs. we sum −R1 × ( 1
N−j+1). Convince yourself that the resulting sum

will be the same.

3). Write the sum as
∫

(dN1(t)−R1(t) · (d[N1(t)+N2(t)]
R1(t)+R2(t) )



Why proportional (cumulative) hazard is a point-wise property and shift model in probability is an

interval property.

To compare H1(t0) to H2(t0), we can immediately find, for example, H1(t0) = η ∗H2(t0). here η is

a parameter. This only involve the H1 and H2 value at one point: t0

To model F1(t0) shift to F2(t0), if we use the model F1(t0) = F2(t0 − η), then this not only involve

the F2(t0), it involves all F2 values from F2(t0) to F2(t0 − η)



6 Calculations related to Greenwood formula

For the right censored data: (X1, δ1), (X2, δ2), · · · , (Xn, δn) define

N(t) =
n∑
i=1

δiI[xi≤t]

This counts the number of observed failures up to time t, whereas dN(t) = ∆N(t) = number of observed

failures at time t.

Define also

R(t) =
n∑
i=1

I[xi≥t]

This counts the number of subjects alive at time t. In medical term, those ‘at risk’ at time t.

Nelson-Aalen estimator is

Λ̂(t) =
∑
s≤t

dN(s)

R(s)

We also have (from the computation of information with piecewise exponential random variables)

V ar(Λ̂(t)) ≈
∑
s≤t

dN(s)

R(s)2
.

The Kaplan-Meier estimator is

1− F̂ (t) =
∏
s≤t

(
1− dN(s)

R(s)

)
.

The variance of Kaplan-Meier estimator (Greenwood formula) can be derived as follows.

V ar(F̂ (t)) = V ar(1− F̂ (t)) ≈ V ar(e−Λ̂(t))

since for continuous CDF we have 1− F (t) = e−Λ(t). Using the delta method, we have

V ar(e−Λ̂(t)) ≈ [e−Λ̂(t)]2V ar(Λ̂(t))

Finally, we get the Greenwood formula by replace e−Λ̂(t) back with 1− F̂ (t), and variance estimator

of Nelson-Aalen

V ar(F̂ (t)) ≈ [1− F̂ (t)]2
∑
s≤t

dN(s)

R(s)[R(s)− dN(s)]

In the denominator we use R(R − dN) instead of R2. This can be explained with binomial variance,

with no censoring.



7 Some notes related to Cox model

Given k independent exponential random variables Xi with hazards λ1, · · · , λk.

We have

P (the failed one is Xi|one failed out of k X ′s) =
λi∑k
j=1 λj

(1)

i.e.

P (Xi = t| min
1≤j≤k

Xj = t) =
λi∑k
j=1 λj

Now imaging the random variables Xi carry with them a value zi, the covariate.

Then the conditional expectation of z value for the failed one, given there is one fail among the k is

k∑
i=1

ziλi∑k
j=1 λj

Or ∑k
i=1 ziλi∑k
j=1 λj

.

If we identify λi with exp(βzi), this is the term in the Partial likelihood.

∑k
i=1 zi exp(βzi)∑k
j=1 exp(βzj)

.

So, at least the score function of the Cox partial likelihood has mean zero. (each term as mean zero,

at true β.) Because it is in a form of ‘observed’ - ‘expected’.

Also, using this we see the Cox partial likelihood is the product of many conditional probabilities,

as in (1). So it is not a ‘real’ likelihood.



8 Notes on the implementation of piecewise exponential regression:

The example in Allison’s book, he cut the time interval for each obs. Ti into pieces defined by intervals

a0 < a1 < a2 < ...

For a genuine piecewise exponential regression, we should cut the time interval for the error variable,

Zi or logZi, not the responses Ti.

AFT model: Ti = exp(−βxi)Zi

where Zi is a standard exp, or exp(1) r.v. After taking log, we have

log(Ti) = −βxi + logZi

To model logZi or Zi as iid piecewise exponential we should divide the time interval for the variable

Zi to 0 = a0 < a1 < a2....

These cut intervals in terms of the variable Ti is different:

So, for Ti we need to cut ( denote φi = exp(−βxi) )

φia0 < φia1 < φia2 < φia3 < ...

If a0 = 0 then the first is always zero.

This (β dependent cut) could be done iteratively. [ first estimate β, then refine the cut, ie. it lead

to new cut, then update the β estimate with this new cut,....]

This way every subject has its own set of intervals.

This should lead to the AFT model with general error distribution. at least the estimator of beta

should be comparable.

The hazard of AFT model: the hazard for Ti is seen given as

hi(t) = h0(tφi)φi

Question:

(1) understand what SAS is doing in the example.

(2) How do you implement the piecewise exp regression in R?

(3) use a cut that is different for each subject and is dependent on βxi.

Can R function survreg() take (start, stop, event) type input? No.



9 Summary of likelihood based inference results

First we take the example of the Weibull distribution introduced earlier. How should one estimate

the two parameters of Weibull distribution given a sample of iid observations? The answer is by the

MLE. But unfortunately, the MLE of the shape parameter is not explicit, and can only be obtained by

numerical methods.

The variance/covariance of the MLE is also hard to compute explicitly. But again the MLE theory

told us the approximate method.

Suppose X1, X2, · · · , Xn are independent and Xi ∼ f(xi|θ) where θ ∈ Θ is the parameter, when

θ ∈ Θ it defines a family of densitie functions f(·|θ). The log likelihood function is

ln(θ) = logLik(θ) =
n∑
i=1

log f(Xi|θ)

The θ value that maximize the ln(θ) is the MLE, denoted by θ̂MLE .

The MLE has the so called ‘invariance property’.

Under mild regularity conditions (something like the two/three derivatives of the density exists and

continuous etc.), we have, for large n

(θ̂MLE − θ0) ≈ N(0,
1

I(θ)
)

where I(θ) is the so called (expected) Fisher information, and θ0 is the true value of the parameter.

Based on this we can construct an approximate 95% confidence interval

θ̂MLE ± 1.96
1√

Î(θ̂MLE)

where Î(θ̂) is the so called observed Fisher information. For θ that are vectors, the similar thing also

holds. There the Fisher information will be a matrix, and reciprocal will be inverse of the matrix, etc.

The above confidence intervals are called Wald confidence intervals. The Wald confidence intervals

DO NOT have ‘invariance property’. [due to what?]

There is also another way of constructing the confidence intervals via the equivalency of the confi-

dence interval and testing hypothesis.

The likelihood ratio test for H0 : θ = θ0 vs. HA; θ 6= θ0 can be based on the

−2[ln(θ0)− ln(θ̂MLE)] = W



The rejection rule is to reject H0 if the W is too large. (use chi square table to find the critical

value).

This also leads to confidence intervals/regions if we invert the test. These confidence intervals are

called Wilks confidence intervals. The Wilks confidence intervals DO have ‘invariance property’.

An interesting relation: for large n,

−2[ln(θ0)− ln(θ̂MLE)] ≈ (θ̂MLE − θ0)2

Î(θ̂MLE)

Notice the left hand side do not explicitly involve I(θ). This can be a real advantage, especially when

the Fisher information is hard to calculate, or invert.

Expected information:

IF = E

(
∂

∂θ
logLik(θ, x)

)2

It is non random but is a function of θ.

Observed information:

Î = − ∂2

(∂θ)2
logLik(θ, x)|θ=θ̂MLE

It is random but do not involve θ (at least not explicitly).

When we dealing with multi-dim parameters, we have similar results.

More complicated for nuisance parameter, parameter of interest etc.


