# Chapter 36 The LIFEREG Procedure

# Chapter Table of Contents

| <b>OVERVIEW</b>                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GETTING STARTED                                                                                                                                                                                                         |
| SYNTAX1767PROC LIFEREG Statement1768BY Statement1769CLASS Statement1769MODEL Statement1770OUTPUT Statement1775WEIGHT Statement1777                                                                                      |
| <b>DETAILS</b> 1777Missing Values1777Main Effects1777Computational Method1778Model Specifications1778Supported Distributions1778OUTEST= Data Set1784Computational Resources1785ODS Table Names1786                      |
| <b>EXAMPLES</b> 1786Example 36.1 Motorette Failure1786Example 36.2 Computing Predicted Values for a Tobit Model1789Example 36.3 Overcoming Convergence Problems by Specifying Initial Values1793 <b>REFERENCES</b> 1796 |

# Chapter 36 The LIFEREG Procedure

# **Overview**

The LIFEREG procedure fits parametric models to failure time data that can be right, left, or interval censored. The models for the response variable consist of a linear effect composed of the covariates and a random disturbance term. The distribution of the random disturbance can be taken from a class of distributions that includes the extreme value, normal, logistic, and, by using a log transformation, the exponential, Weibull, lognormal, loglogistic, and gamma distributions.

The model assumed for the response y is

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \sigma\boldsymbol{\epsilon}$$

where  $\mathbf{y}$  is a vector of response values, often the log of the failure times,  $\mathbf{X}$  is a matrix of covariates or independent variables (usually including an intercept term),  $\beta$  is a vector of unknown regression parameters,  $\sigma$  is an unknown scale parameter, and  $\epsilon$  is a vector of errors assumed to come from a known distribution (such as the standard normal distribution). The distribution may depend on additional shape parameters. These models are equivalent to accelerated failure time models when the log of the response is the quantity being modeled. The effect of the covariates in an accelerated failure time model is to change the scale, and not the location, of a baseline distribution of failure times.

The LIFEREG procedure estimates the parameters by maximum likelihood using a Newton-Raphson algorithm. PROC LIFEREG estimates the standard errors of the parameter estimates from the inverse of the observed information matrix.

The accelerated failure time model assumes that the effect of independent variables on an event time distribution is multiplicative on the event time. Usually, the scale function is  $\exp(\mathbf{x}'\beta)$ , where  $\mathbf{x}$  is the vector of covariate values and  $\beta$  is a vector of unknown parameters. Thus, if  $T_0$  is an event time sampled from the baseline distribution corresponding to values of zero for the covariates, then the accelerated failure time model specifies that, if the vector of covariates is  $\mathbf{x}$ , the event time is  $T = \exp(\mathbf{x}'\beta)T_0$ . If  $y = \log(T)$  and  $y_0 = \log(T_0)$ , then

$$y = \mathbf{x}'\beta + y_0$$

This is a linear model with  $y_0$  as the error term.

In terms of survival or exceedance probabilities, this model is

$$\Pr(T > t \mid \mathbf{x}) = \Pr(T_0 > \exp(-\mathbf{x}'\beta)t)$$

The probability on the left-hand side of the equal sign is evaluated given the value  $\mathbf{x}$  for the covariates, and the right-hand side is computed using the baseline probability distribution but at a scaled value of the argument. The right-hand side of the equation represents the value of the baseline Survival Distribution Function evaluated at  $\exp(-\mathbf{x}'\beta)t$ .

Usually, an intercept parameter and a scale parameter are allowed in the model. In terms of the original untransformed event times, the effects of the intercept term and the scale term are to scale the event time and power the event time, respectively. That is, if

$$\log(T) = \mu + \sigma \log(T_0)$$

then

$$T = \exp(\mu) T_0^{\sigma}$$

Although it is possible to fit these models to the original response variable using the NOLOG option, it is more common to model the log of the response variable. Because of this log transformation, zero values for the observed failure times are not allowed unless the NOLOG option is specified. Similarly, small values for the observed failure times lead to large negative values for the transformed response. The NOLOG option should only be used if you want to fit a distribution appropriate for the untransformed response, the extreme value instead of the Weibull, for example.

The parameter estimates for the normal distribution are sensitive to large negative values, and care must be taken that the fitted model is not unduly influenced by them. Likewise, values that are extremely large even after the log transformation have a strong influence in fitting the extreme value (Weibull) and normal distributions. You should examine the residuals and check the effects of removing observations with large residuals or extreme values of covariates on the model parameters. The logistic distribution gives robust parameter estimates in the sense that the estimates have a bounded influence function.

The standard errors of the parameter estimates are computed from large sample normal approximations using the observed information matrix. In small samples, these approximations may be poor. Refer to Lawless (1982) for additional discussion and references. You can sometimes construct better confidence intervals by transforming the parameters. For example, large sample theory is often more accurate for  $\log(\sigma)$ than  $\sigma$ . Therefore, it may be more accurate to construct confidence intervals for  $\log(\sigma)$  and transform these into confidence intervals for  $\sigma$ . The parameter estimates and their estimated covariance matrix are available in an output SAS data set and can be used to construct additional tests or confidence intervals for the parameters. Alternatively, tests of parameters can be based on log-likelihood ratios. Refer to Cox and Oakes (1984) for a discussion of the merits of some possible test methods including score, Wald, and likelihood ratio tests. It is believed that likelihood ratio tests are generally more reliable in small samples than tests based on the information matrix. The log-likelihood function is computed using the log of the failure time as a response. This log likelihood differs from the log likelihood obtained using the failure time as the response by an additive term of  $\sum \log(t_i)$ , where the sum is over the noncensored failure times. This term does not depend on the unknown parameters and does not affect parameter or standard error estimates. However, many published values of log likelihoods use the failure time as the basic response variable and, hence, differ by the additive term from the value computed by the LIFEREG procedure.

The classic Tobit model (Tobin 1958) also fits into this class of models but with data usually censored on the left. The data considered by Tobin in his original paper came from a survey of consumers where the response variable is the ratio of expenditures on durable goods to the total disposable income. The two explanatory variables are the age of the head of household and the ratio of liquid assets to total disposable income. Because many observations in this data set have a value of zero for the response variable, the model fit by Tobin is

 $\mathbf{y} = \max(\mathbf{x}'\beta + \epsilon, 0)$ 

which is a regression model with left censoring.

# **Getting Started**

The following examples demonstrate how you can use the LIFEREG procedure to fit a parametric model to failure time data.

Suppose you have a response variable y that represents failure time, **Censor** is a binary variable indicating censored values, and x1 and x2 are two linearly independent variables. The following statements perform a typical accelerated failure time model analysis. Note that no higher-order effects such as interactions are allowed in the covariables list.

```
proc lifereg;
  model y*censor(0) = x1 x2;
run;
```

PROC LIFEREG can operate on interval-censored data. The model syntax for specifying the censored interval is

```
proc lifereg;
   model (begin, end) = x1 x2;
run;
```

You can also express the response with *events/trials* syntax, as illustrated in the following statements:

```
proc lifereg;
  model r/n=x1 x2;
run;
```

The variable n represents the number of trials and the variable r represents the number of events.

## **Modeling Right-Censored Failure Time Data**

The following example demonstrates how you can use the LIFEREG procedure to fit a model to right-censored failure time data.

Suppose you conduct a study of two headache pain relievers. You divide patients into two groups, with each group receiving a different type of pain reliever. You record the time taken (in minutes) for each patient to report headache relief. Because some of the patients never report relief for the entire study, some of the observations are censored.

The following DATA step creates the SAS data set headache:

```
data headache;
   input minutes group censor @@;
   datalines;
       0
               1
                  0
                      19
                                  19
                                      1
                                         0
11
   1
           12
                          1
                              0
   1
       0
           19
               1
                  0
                                  20
                                      1
19
                      21
                          1
                              0
                                         0
21 1
       0
           21
              1
                  0
                      20
                          1
                              0
                                  21
                                      1
                                         0
   1
              1
                      25
                                  27
20
       0
           21
                  0
                          1
                              0
                                      1
                                         0
30
    1
       0
           21
               1
                  1
                      24
                          1
                             1
                                  14
                                      2
                                         0
   2
       0
           16 2 0
                      21
                          2
                                  21
                                      2
16
                             0
                                         0
                          2
23 2
       0
           23 2 0
                      23
                             0
                                  23
                                      2
                                         0
25 2
       1
           23 2 0
                      24
                          2
                             0
                                  24
                                      2
                                         0
26
   2 1
           32 2
                  1
                      30
                          2
                             1
                                  30
                                      2
                                         0
   2 1
           20
              2 1
32
;
```

The data set headache contains the variable minutes, which represents the reported time to headache relief, the variable group, the group to which the patient is assigned, and the variable censor, a binary variable indicating whether the observation is censored. Valid values of the variable censor are 0 (no) and 1 (yes). The first five records of the data set headache are shown below.

| Obs | minutes | group | censor |
|-----|---------|-------|--------|
| 1   | 11      | 1     | 0      |
| 2   | 12      | 1     | 0      |
| 3   | 19      | 1     | 0      |
| 4   | 19      | 1     | 0      |
| 5   | 19      | 1     | 0      |
|     |         |       |        |



The following statements invoke the LIFEREG procedure:

```
proc lifereg;
    class group;
    model minutes*censor(1)=group;
    output out=new cdf=prob;
run;
```

The CLASS statement specifies the variable group as the classification variable. The MODEL statement syntax indicates that the response variable minutes is censored when the variable censor takes the value 1. The MODEL statement specifies the variable group as the single explanatory variable. Because the MODEL statement does not specify the DISTRIBUTION= option, the LIFEREG procedure fits the default type 1 extreme value distribution using log(minutes) as the response. This is equivalent to fitting the Weibull distribution.

The OUTPUT statement creates the output data set new. In addition to the variables in the original data set headache, the SAS data set new also contains the variable prob. This new variable is created by the CDF= option to contain the estimates of the cumulative distribution function evaluated at the observed response.

The results of this analysis are displayed in the following figures.

```
The LIFEREG Procedure
         Class Level Information
                            Values
       Name
                  Levels
       group
                            1 2
                       2
            Model Information
                             WORK, HEADACHE
Data Set
Dependent Variable
                             Log(minutes)
Censoring Variable
                                    censor
Censoring Value(s)
                                         1
Number of Observations
                                        38
                                        30
Noncensored Values
Right Censored Values
                                         8
                                         0
Left Censored Values
Interval Censored Values
                                         0
Name of Distribution
                                   WEIBULL
Log Likelihood
                               -9.37930239
```



Figure 36.2 displays the class level information and model fitting information. There are 30 noncensored observations and 8 right-censored observations. The log likelihood for the Weibull distribution is -9.3793. The log-likelihood value can be used to compare the goodness of fit for different models.

|                                 | The LIFEREG Procedure |          |          |            |            |                     |  |  |
|---------------------------------|-----------------------|----------|----------|------------|------------|---------------------|--|--|
| Analysis of Parameter Estimates |                       |          |          |            |            |                     |  |  |
|                                 |                       |          | Standard |            |            |                     |  |  |
| Variable                        | DF                    | Estimate | Error    | Chi-Square | Pr > ChiSq | Label               |  |  |
| Intercept                       | 1                     | 3.30912  | 0.05885  | 3161.7000  | <.0001     | Intercept           |  |  |
| group                           | 1                     |          |          | 6.0540     | 0.0139     |                     |  |  |
|                                 | 1                     | -0.19330 | 0.07856  | 6.0540     | 0.0139     | 1                   |  |  |
|                                 | 0                     | 0        | 0        | •          |            | 2                   |  |  |
| Scale                           | 1                     | 0.21219  | 0.03036  |            |            | Extreme value scale |  |  |

Figure 36.3. Model Parameter Estimates from the LIFEREG Procedure

The table of parameter estimates is displayed in Figure 36.3. Both the intercept and the slope parameter for the variable group are significantly different from 0 at the 0.05 level. Because the variable group has only one degree of freedom, parameter estimates are given for only one level of the variable group (group=1). However, the estimate for the intercept parameter provides a baseline for group=2. The resulting model is

 $\log(\text{minutes}) = \left\{ \begin{array}{ll} 3.30911843 - 0.1933025 & \text{for group=1} \\ 3.30911843 & \text{for group=2} \end{array} \right.$ 

Note that the Weibull shape parameter for this model is the reciprocal of the extreme value scale parameter estimate shown in Figure 36.3 (1/0.21219 = 4.7128).

The following statements produce a graph of the cumulative distribution values versus the variable minutes. The LEGEND1 statement defines the appearance of the legend that displays on the plot. The two AXIS statements define the appearance of the plot axes. The SYMBOL statements control the plotting symbol, color, and method of smoothing.

```
legend1 frame cframe=ligr cborder=black
    position=center value=(justify=center);
axis1 label=(angle=90 rotate=0 'Estimated CDF') minor=none;
axis2 minor=none;
symbol1 c=white i=spline;
symbol2 c=yellow i=spline;
proc sort data=new;
    by prob;
proc gplot data=new;
    plot prob*minutes=group/ frame cframe=ligr
        legend=legend1 vaxis=axis1 haxis=axis2;
run;
```

The SORT procedure sorts the data set **new** by the variable **prob**. Then the GPLOT procedure plots the variable **prob** versus the variable **minutes** using the grouping

variable as the identification variable. The LEGEND=, VAXIS=, and HAXIS= options specify the previously defined legend and axis statements.

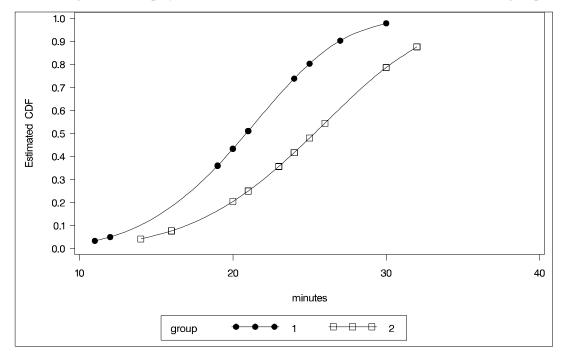


Figure 36.4 displays the estimated cumulative distribution function for each group.

Figure 36.4. Plot of the Estimated Cumulative Distribution Function

# **Syntax**

The following statements are available in PROC LIFEREG.

```
PROC LIFEREG < options > ;
MODEL response=independents < I options > ;
BY variables ;
CLASS variables ;
OUTPUT < OUT=SAS-data-set >
keyword=name < ... keyword=name >
< options > ;
WEIGHT variable ;
```

The PROC LIFEREG statement invokes the procedure. The MODEL statement is required and specifies the variables used in the regression part of the model as well as the distribution used for the error, or random, component of the model. Only main effects can be specified in the MODEL statements. Interaction terms involving CLASS variables, allowed in the GLM procedure, are not available in PROC LIFEREG. Initial values can be specified in the MODEL statement. If no initial values are specified, the starting estimates are obtained by ordinary least squares. The CLASS statement determines which explanatory variables are treated as categorical. The WEIGHT

statement identifies a variable with values that are used to weight the observations. Observations with zero or negative weights are not used to fit the model, although predicted values can be computed for them. The OUTPUT statement creates an output data set containing predicted values and residuals.

## **PROC LIFEREG Statement**

#### **PROC LIFEREG** < *options* > ;

The PROC LIFEREG statement invokes the procedure. You can specify the following options in the PROC LIFEREG statement.

#### COVOUT

writes the estimated covariance matrix to the OUTEST=data set if convergence is attained.

#### DATA=SAS-data-set

specifies the input SAS data set used by PROC LIFEREG. By default, the most recently created SAS data set is used.

#### NOPRINT

suppresses the display of the output. Note that this option temporarily disables the Output Delivery System (ODS). For more information, see Chapter 15, "Using the Output Delivery System."

#### ORDER=DATA | FORMATTED | FREQ | INTERNAL

specifies the sorting order for the levels of the classification variables (specified in the CLASS statement). This ordering determines which parameters in the model correspond to each level in the data. The following table illustrates how PROC LIFEREG interprets values of the ORDER= option.

| Value of ORDER= | Levels Sorted By                                                                      |
|-----------------|---------------------------------------------------------------------------------------|
| DATA            | order of appearance in the input data set                                             |
| FORMATTED       | formatted value                                                                       |
| FREQ            | descending frequency count; levels with the most observations come first in the order |
| INTERNAL        | unformatted value                                                                     |

By default, ORDER=FORMATTED. For FORMATTED and INTERNAL, the sort order is machine dependent. For more information on sorting order, refer to the chapter titled "The SORT Procedure" in the SAS Procedures Guide.

#### OUTEST=SAS-data-set

specifies an output SAS data set containing the parameter estimates, the maximized log likelihood and, if the COVOUT option is specified, the estimated covariance matrix. See the section "OUTEST= Data Set" on page 1784 for a detailed description of the contents of the OUTEST= data set. This data set is not created if class variables are used.

## **BY Statement**

#### BY variables;

You can specify a BY statement with PROC LIFEREG to obtain separate analyses on observations in groups defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data using the SORT procedure with a similar BY statement.
- Specify the BY statement option NOTSORTED or DESCENDING in the BY statement for the LIFEREG procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion in *SAS Language Reference: Concepts.* For more information on the DATASETS procedure, refer to the discussion in the *SAS Procedures Guide*.

## **CLASS Statement**

#### CLASS variables;

Variables that are classification variables rather than quantitative numeric variables must be listed in the CLASS statement. For each explanatory variable listed in the CLASS statement, indicator variables are generated for the levels assumed by the CLASS variable. If you use a CLASS statement, you cannot output parameter estimates to the OUTEST= data set (you can output them to a data set via ODS). If the CLASS statement is used, it must appear before any of the MODEL statements.

## **MODEL Statement**

<label:> MODEL response<\*censor(list)>=independents,

<label:> MODEL (lower,upper)=independents < / options > ;

<label:> MODEL events/trials=independents < / options > ;

Multiple MODEL statements can be used with one invocation of the LIFEREG procedure. The optional *label* is used to label the model estimates in the output SAS data set.

The first MODEL syntax allows for right censoring. The variable *response* is possibly right censored. If the *response* variable can be right censored, then a second variable, denoted *censor*, must appear after the *response* variable with a list of parenthesized values, separated by commas or blanks, to indicate censoring. That is, if the *censor* variable takes on a value given in the list, the *response* is a right-censored value; otherwise, it is an observed value.

The second MODEL syntax specifies two variables, *lower* and *upper*, that contain values of the endpoints of the censoring interval. If the two values are the same (and not missing), it is assumed that there is no censoring and the actual response value is observed. If the lower value is missing, then the upper value is used as a left-censored value. If the upper value is missing, then the lower value is taken as a right-censored value. If both values are present and the lower value is less than the upper value, it is assumed that the values specify a censoring interval. If the lower value is greater than the upper value or both values are missing, then the observation is not used in the analysis although predicted values can still be obtained if none of the covariates are missing. The following table summarizes the ways of specifying censoring.

| lower       | upper       | Comparison    | Interpretation                          |
|-------------|-------------|---------------|-----------------------------------------|
| not missing | not missing | equal         | no censoring                            |
| not missing | not missing | lower < upper | censoring interval-                     |
| missing     | not missing |               | upper used as left-<br>censoring value  |
| not missing | missing     |               | lower used as right-<br>censoring value |
| not missing | not missing | lower > upper | observation not used                    |
| missing     | missing     |               | observation not used                    |

The third MODEL syntax specifies two variables that contain count data for a binary response. The value of the first variable, *events*, is the number of successes. The value of the second variable, *trials*, is the number of tries. The values of both *events* and (*trials-events*) must be nonnegative, and *trials* must be positive for the response to be valid. The values of the two variables do not need to be integers and are not modified to be integers.

The variables following the equal sign are the covariates in the model. No higher order effects, such as interactions, are allowed in the covariables list; only variable names are allowed to appear in this list. However, a class variable can be used as a main effect, and indicator variables are generated for the class levels. If you do not specify any covariates following the equal sign, an intercept-only model is fit.

Examples of three valid MODEL statements are

```
a: model time*flag(1,3)=temp;
b: model (start, finish)=;
c: model r/n=dose;
```

Model statement a indicates that the response is contained in a variable named time and that, if the variable flag takes on the values 1 or 3, the observation is right censored. The explanatory variable is temp, which could be a class variable. Model statement b indicates that the response is known to be in the interval between the values of the variables start and finish and that there are no covariates except for a default intercept term. Model statement c indicates a binary response, with the variable r containing the number of responses and the variable n containing the number of trials.

The following options can appear in the MODEL statement.

| Task                                        | Option        |
|---------------------------------------------|---------------|
| Model specification                         |               |
| specify distribution type for failure time  | DISTRIBUTION= |
| request no log transformation of response   | NOLOG         |
| initial estimate for intercept term         | INTERCEPT=    |
| hold intercept term fixed                   | NOINT         |
| initial estimates for regression parameters | INITIAL=      |
| initialize scale parameter                  | SCALE=        |
| hold scale parameter fixed                  | NOSCALE       |
| initialize first shape parameter            | SHAPE1=       |
| hold first shape parameter fixed            | NOSHAPE1      |
| Model fitting                               |               |
| set convergence criterion                   | CONVERGE=     |
| set maximum iterations                      | MAXITER=      |
| set tolerance for testing singularity       | SINGULAR=     |
| Output                                      |               |
| display estimated correlation matrix        | CORRB         |
| display estimated covariance matrix         | COVB          |
| display iteration history, final gradient,  | ITPRINT       |
| and second derivative matrix                |               |

#### **CONVERGE**=value

sets the convergence criterion. Convergence is declared when the maximum change in the parameter estimates between Newton-Raphson steps is less than the value specified. The change is a relative change if the parameter is greater than 0.01 in absolute value; otherwise, it is an absolute change. By default, CONVERGE=0.001.

#### CONVG=number

sets the relative Hessian convergence criterion. The value of *number* must be between 0 and 1. After convergence is determined with the change in parameter criterion specified with the CONVERGE= option, the quantity  $tc = \frac{\mathbf{g'H}^{-1}\mathbf{g}}{|f|}$  is computed and compared to *number*, where  $\mathbf{g}$  is the gradient vector,  $\mathbf{H}$  is the Hessian matrix for the model parameters, and f is the log-likelihood function. If tc is greater than *number*, a warning that the relative Hessian convergence criterion has been exceeded is printed. This criterion detects the occasional case where the change in parameter convergence criterion is satisfied, but a maximum in the log-likelihood function has not been attained. By default, CONVG=1E-4.

#### CORRB

produces the estimated correlation matrix of the parameter estimates.

#### COVB

produces the estimated covariance matrix of the parameter estimates.

#### **DISTRIBUTION=**distribution-type

## DIST=distribution-type

### D=distribution-type

specifies the distribution type assumed for the failure time. By default, PROC LIFEREG fits a type 1 extreme value distribution to the log of the response. This

is equivalent to fitting the Weibull distribution, since the scale parameter for the extreme value distribution is related to a Weibull shape parameter and the intercept is related to the Weibull scale parameter in this case. When the NOLOG option is specified, PROC LIFEREG models the untransformed response with a type 1 extreme value distribution as the default. See the section "Supported Distributions" on page 1780 for descriptions of the distributions. The following are valid values for *distribution-type*:

- EXPONENTIAL the exponential distribution, which is treated as a restricted Weibull distribution
- GAMMA a generalized gamma distribution (Lawless, 1982, p. 240). The two parameter gamma distribution is not available in PROC LIFEREG.
- LLOGISTIC a loglogistic distribution
- LNORMAL a lognormal distribution
- LOGISTIC a logistic distribution (equivalent to LLOGISTIC when the NOLOG option is specified)
- NORMAL a normal distribution (equivalent to LNORMAL when the NOLOG option is specified)
- WEIBULL a Weibull distribution. If NOLOG is specified, it fits a type 1 extreme value distribution to the raw, untransformed data.

By default, PROC LIFEREG transforms the response with the natural logarithm before fitting the specified model when you specify the GAMMA, LLOGISTIC, LNORMAL, or WEIBULL option. You can suppress the log transformation with the NOLOG option. The following table summarizes the resulting distributions when the distribution options above are used in combination with the NOLOG option.

| DISTRIBUTION= | NOLOG specified? | Resulting distribution                         |
|---------------|------------------|------------------------------------------------|
| EXPONENTIAL   | No               | Exponential                                    |
| EXPONENTIAL   | Yes              | One parameter extreme value                    |
| GAMMA         | No               | Generalized gamma                              |
| GAMMA         | Yes              | Generalized gamma with untransformed responses |
| LOGISTIC      | No               | Logistic                                       |
| LOGISTIC      | Yes              | Logistic (NOLOG has no effect)                 |
| LLOGISTIC     | No               | Log-logistic                                   |
| LLOGISTIC     | Yes              | Logistic                                       |
| LNORMAL       | No               | Lognormal                                      |
| LNORMAL       | Yes              | Normal                                         |
| NORMAL        | No               | Normal                                         |
| NORMAL        | Yes              | Normal (NOLOG has no effect)                   |
| WEIBULL       | No               | Weibull                                        |
| WEIBULL       | Yes              | Extreme value                                  |

#### **INITIAL=**values

sets initial values for the regression parameters. This option can be helpful in the case of convergence difficulty. Specified values are used to initialize the regression coefficients for the covariates specified in the MODEL statement. The intercept parameter is initialized with the INTERCEPT= option and is not included here. The values are assigned to the variables in the MODEL statement in the same order in which they are listed in the MODEL statement. Note that a class variable requires k - 1 values when the class variable takes on k different levels. The order of the class levels is determined by the ORDER= option. If there is no intercept term, the first class variable requires k initial values. If a BY statement is used, all class variables must take on the same number of levels in each BY group or no meaningful initial values can be specified. The INITIAL option can be specified as follows.

| Type of List             | Specification       |
|--------------------------|---------------------|
| list separated by blanks | initial=3 4 5       |
| list separated by commas | initial=3,4,5       |
| x to y                   | initial=3 to 5      |
| x to y by z              | initial=3 to 5 by 1 |
| combination of methods   | initial=1,3 to 5,9  |

By default, PROC LIFEREG computes initial estimates with ordinary least squares. See the section "Computational Method" on page 1778 for details.

#### **INTERCEPT=**value

initializes the intercept term to *value*. By default, the intercept is initialized by an ordinary least squares estimate.

#### ITPRINT

displays the iteration history, the final evaluation of the gradient, and the final evaluation of the negative of the second derivative matrix, that is, the negative of the Hessian.

#### **MAXITER=**value

sets the maximum allowable number of iterations during the model estimation. By default, MAXITER=50.

#### NOINT

holds the intercept term fixed. Because of the usual log transformation of the response, the intercept parameter is usually a scale parameter for the untransformed response, or a location parameter for a transformed response.

#### NOLOG

requests that no log transformation of the response variable be performed. By default, PROC LIFEREG models the log of the response variable for the GAMMA, LLOGISTIC, LOGNORMAL, and WEIBULL distribution options.

#### NOSCALE

holds the scale parameter fixed. Note that if the log transformation has been applied to the response, the effect of the scale parameter is a power transformation of the original response. If no SCALE= value is specified, the scale parameter is fixed at the value 1.

#### **NOSHAPE1**

holds the first shape parameter, SHAPE1, fixed. If no SHAPE= value is specified, SHAPE1 is fixed at a value that depends on the DISTRIBUTION type.

#### SCALE=value

initializes the scale parameter to *value*. If the Weibull distribution is specified, this scale parameter is the scale parameter of the type 1 extreme value distribution, not the Weibull scale parameter. Note that, with a log transformation, the exponential model is the same as a Weibull model with the scale parameter fixed at the value 1.

#### SHAPE1=value

initializes the first shape parameter to *value*. If the specified distribution does not depend on this parameter, then this option has no effect. The only distribution that depends on this shape parameter is the generalized gamma distribution. See the "Supported Distributions" section on page 1780 for descriptions of the parameterizations of the distributions.

#### SINGULAR=value

sets the tolerance for testing singularity of the information matrix and the crossproducts matrix for the initial least-squares estimates. Roughly, the test requires that a pivot be at least this number times the original diagonal value. By default, SINGULAR=1E-12.

## **OUTPUT Statement**

**OUTPUT** < **OUT**=SAS-data-set> keyword=name < . . . keyword=name> ;

The OUTPUT statement creates a new SAS data set containing statistics calculated after fitting the model. At least one specification of the form *keyword=name* is required.

All variables in the original data set are included in the new data set, along with the variables created as options to the OUTPUT statement. These new variables contain fitted values and estimated quantiles. If you want to create a permanent SAS data set, you must specify a two-level name (refer to *SAS Language Reference: Concepts* for more information on permanent SAS data sets). Each OUTPUT statement applies to the preceding MODEL statement. See Example 36.1 for illustrations of the OUTPUT statement.

The following specifications can appear in the OUTPUT statement:

OUT=SAS-data-setspecifies the new data set. By default, the procedure uses the<br/>DATAn convention to name the new data set.keyword=namespecifies the statistics to include in the output data set and gives<br/>names to the new variables. Specify a keyword for each desired<br/>statistic (see the following list of keywords), an equal sign, and<br/>the variable to contain the statistic.

The keywords allowed and the statistics they represent are as follows:

- CENSORED specifies an indicator variable to signal censoring. The variable takes on the value 1 if the observation is censored; otherwise, it is 0.
- CDF specifies a variable to contain the estimates of the cumulative distribution function evaluated at the observed response. See the "Predicted Values" section on page 1783 for more information.
- CONTROL specifies a variable in the input data set to control the estimation of quantiles. See Example 36.1 for an illustration. If the specified variable has the value of 1, estimates for all the values listed in the QUANTILE= list are computed for that observation in the input data set; otherwise, no estimates are computed. If no CONTROL= variable is specified, all quantiles are estimated for all observations. If the response variable in the MODEL statement is binomial, then this option has no effect.
- PREDICTED | P specifies a variable to contain the quantile estimates. If the response variable in the corresponding model statement is binomial, then this variable contains the estimated probabilities,  $1 F(-\mathbf{x}'\mathbf{b})$ .
- QUANTILES | QUANTILE | Q gives a list of values for which quantiles are calculated. The values must be between 0 and 1, noninclusive. For each value, a corresponding quantile is estimated. This option is not used if the response variable in the corresponding MODEL statement is binomial. The QUANTILES option can be specified as follows.

| Type of List             | Specification     |
|--------------------------|-------------------|
| list separated by blanks | .2 .4 .6 .8       |
| list separated by commas | .2,.4,.6,.8       |
| x to y                   | .2 to .8          |
| x to y by z              | .2 to .8 by .1    |
| combination of methods   | .1,.2 to .8 by .2 |

By default, QUANTILES=0.5. When the response is not binomial, a numeric variable, \_PROB\_, is added to the OUTPUT data set whenever the QUANTILES= option is specified. The variable \_PROB\_ gives the probability value for the quantile estimates. These are the values taken from the QUANTILES= list and are given as values between 0 and 1, not as values between 0 and 100.

 $STD\_ERR | STD$  specifies a variable to contain the estimates of the standard errors of the estimated quantiles or  $\mathbf{x}'\mathbf{b}$ . If the response used in the MODEL statement is a binomial response, then these are the standard errors of  $\mathbf{x}'\mathbf{b}$ . Otherwise, they are the standard errors of the

quantile estimates. These estimates can be used to compute confidence intervals for the quantiles. However, if the model is fit to the log of the event time, better confidence intervals can usually be computed by transforming the confidence intervals for the log response. See Example 36.1 for such a transformation.

XBETA specifies a variable to contain the computed value of  $\mathbf{x}'\mathbf{b}$ , where  $\mathbf{x}$  is the covariate vector and  $\mathbf{b}$  is the vector of parameter estimates.

## **WEIGHT Statement**

#### WEIGHT variable;

If you want to use weights for each observation in the input data set, place the weights in a variable in the data set and specify the name in a WEIGHT statement. The values of the WEIGHT variable can be nonintegral and are not truncated. Observations with nonpositive or missing values for the weight variable do not contribute to the fit of the model. The WEIGHT variable multiplies the contribution to the log likelihood for each observation.

# Details

## **Missing Values**

Any observation with missing values for the dependent variable is not used in the model estimation unless it is one and only one of the values in an interval specification. Also, if one of the explanatory variables or the censoring variable is missing, the observation is not used. For any observation to be used in the estimation of a model, only the variables needed in that model have to be nonmissing. Predicted values are computed for all observations with no missing explanatory variable values. If the censoring variable is missing, the CENSORED= variable in the OUT= SAS data set is also missing.

## Main Effects

Unlike the GLM procedure, only main effect terms are allowed in the model specification. For numeric variables, this is a linear term equal to the value of the variable unless the variable appears in the CLASS statement. For variables listed in the CLASS statement, PROC LIFEREG creates indicator variables (variables taking the values zero or one) for every level of the variable except the last level. If there is no intercept term, the first class variable has indicator variables created for all levels including the last level. The levels are ordered according to the ORDER= option. Estimates of a main effect depend upon other effects in the model and, therefore, are adjusted for the presence of other effects in the model.

## **Computational Method**

By default, the LIFEREG Procedure computes initial values for the parameters using ordinary least squares (OLS) ignoring censoring. This might not be the best set of starting values for a given set of data. For example, if there are extreme values in your data the OLS fit may be excessively influenced by the extreme observations, causing an overflow or convergence problems. See Example 36.3 for one way to deal with convergence problems.

You can specify the INITIAL= option in the MODEL statement to override these starting values. You can also specify the INITIAL=, SCALE=, and SHAPE= options to set initial values of the intercept, scale, and shape parameters.

The rank of the design matrix  $\mathbf{X}$  is estimated before the model is fit. Columns of  $\mathbf{X}$  that are judged linearly dependent on other columns have the corresponding parameters set to zero. The test for linear dependence is controlled by the SINGULAR= option in the MODEL statement. Variables are included in the model in the order in which they are listed in the MODEL statement with the nonclass variables included in the model before any class variables.

The log-likelihood function is maximized by means of a ridge-stabilized Newton-Raphson algorithm. The maximized value of the log-likelihood can take positive or negative values, depending on the specified model and the values of the maximum likelihood estimates of the model parameters.

A composite chi-square test statistic is computed for each class variable, testing whether there is any effect from any of the levels of the variable. This statistic is computed as a quadratic form in the appropriate parameter estimates using the corresponding submatrix of the asymptotic covariance matrix estimate. The asymptotic covariance matrix is computed as the inverse of the observed information matrix. Note that if the NOINT option is specified and class variables are used, the first class variable contains a contribution from an intercept term.

## **Model Specifications**

#### LIFEREG procedure

Suppose there are *n* observations from the model  $\mathbf{y} = \mathbf{X}\beta + \sigma\epsilon$ , where **X** is an  $n \times k$  matrix of covariate values (including the intercept),  $\mathbf{y}$  is a vector of responses, and  $\epsilon$  is a vector of errors with survival distribution function *S*, cumulative distribution function *F*, and probability density function *f*. That is,  $S(t) = \Pr(\epsilon_i > t)$ ,  $F(t) = \Pr(\epsilon_i \le t)$ , and f(t) = dF(t)/dt, where  $\epsilon_i$  is a component of the error vector. Then, if all the responses are observed, the log likelihood, *L*, can be written as

$$L = \sum \log\left(\frac{f(w_i)}{\sigma}\right)$$

where  $w_i = \frac{1}{\sigma}(y_i - \mathbf{x}'_i\beta)$ .

If some of the responses are left, right, or interval censored, the log likelihood can be written as

$$L = \sum \log\left(\frac{f(w_i)}{\sigma}\right) + \sum \log\left(S(w_i)\right) + \sum \log\left(F(w_i)\right) + \sum \log\left(F(w_i)\right) + \sum \log\left(F(w_i) - F(v_i)\right)$$

with the first sum over uncensored observations, the second sum over right-censored observations, the third sum over left-censored observations, the last sum over interval-censored observations, and

$$v_i = \frac{1}{\sigma} (z_i - \mathbf{x}_i' \beta)$$

where  $z_i$  is the lower end of a censoring interval.

If the response is specified in the binomial format, *events/trials*, then the log-likelihood function is

$$L = \sum r_i \log(P_i) + (n_i - r_i) \log(1 - P_i)$$

where  $r_i$  is the number of events and  $n_i$  is the number of trials for the *i*th observation. In this case,  $P_i = 1 - F(-\mathbf{x}'_i\beta)$ . For the symmetric distributions, logistic and normal, this is the same as  $F(\mathbf{x}'_i\beta)$ . Additional information on censored and limited dependent variable models can be found in Kalbfleisch and Prentice (1980) and Maddala (1983).

The estimated covariance matrix of the parameter estimates is computed as the negative inverse of  $\mathbf{I}$ , which is the information matrix of second derivatives of L with respect to the parameters evaluated at the final parameter estimates. If  $\mathbf{I}$  is not positive definite, a positive definite submatrix of  $\mathbf{I}$  is inverted, and the remaining rows and columns of the inverse are set to zero. If some of the parameters, such as the scale and intercept, are restricted, the corresponding elements of the estimated covariance matrix are set to zero. The standard error estimates for the parameter estimates are taken as the square roots of the corresponding diagonal elements.

For restrictions placed on the intercept, scale, and shape parameters, one-degree-offreedom Lagrange multiplier test statistics are computed. These statistics are computed as

$$\chi^2 = \frac{g^2}{V}$$

where g is the derivative of the log likelihood with respect to the restricted parameter at the restricted maximum and

$$V = \mathbf{I}_{11} - \mathbf{I}_{12}\mathbf{I}_{22}^{-1}\mathbf{I}_{21}$$

where the 1 subscripts refer to the restricted parameter and the 2 subscripts refer to the unrestricted parameters. The information matrix is evaluated at the restricted

maximum. These statistics are asymptotically distributed as chi-squares with one degree of freedom under the null hypothesis that the restrictions are valid, provided that some regularity conditions are satisfied. See Rao (1973, p. 418) for a more complete discussion. It is possible for these statistics to be missing if the observed information matrix is not positive definite. Higher degree-of-freedom tests for multiple restrictions are not currently computed.

A Lagrange multiplier test statistic is computed to test this constraint. Notice that this test statistic is comparable to the Wald test statistic for testing that the scale is one. The Wald statistic is the result of squaring the difference of the estimate of the scale parameter from one and dividing this by the square of its estimated standard error.

## **Supported Distributions**

For each distribution, the baseline survival distribution function (S) and the probability density function(f) are listed for the additive random disturbance. These distributions apply when the log of the response is modeled (this is the default analysis). The corresponding survival distribution function (G) and its density function (g) are given for the untransformed baseline distribution. For example, for the WEIBULL distribution, S(w) and f(w) are the baseline survival distribution function and the probability density function for the extreme value distribution (the log of the response) while G(t) and g(t) are the survival distribution function and probability distribution function of a Weibull distribution (using the untransformed response).

The chosen baseline functions define the meaning of the intercept, scale, and shape parameters. Only the gamma distribution has a free shape parameter in the following parameterizations. Notice that some of the distributions do not have mean zero and that  $\sigma$  is not, in general, the standard deviation of the baseline distribution.

Additionally, it is worth mentioning that, for the Weibull distribution, the accelerated failure time model is also a proportional-hazards model. However, the parameterization for the covariates differs by a multiple of the scale parameter from the parameterization commonly used for the proportional hazards model.

The distributions supported in the LIFEREG procedure follow.  $\mu$  = Intercept and  $\sigma$  = Scale in the output.

#### Exponential

$$S(w) = \exp(-\exp(w - \mu))$$
  

$$f(w) = \exp(w - \mu)\exp(-\exp(w - \mu))$$
  

$$G(t) = \exp(-\alpha t)$$
  

$$g(t) = \alpha \exp(-\alpha t)$$

where  $\exp(-\mu) = \alpha$ .

#### **Generalized Gamma**

(with  $\mu = 0, \sigma = 1$ )

$$\begin{split} S(w) &= \begin{cases} \frac{\Gamma\left(\delta^{-2}, \delta^{-2} \exp(\delta w)\right)}{\Gamma(\delta^{-2})} & \text{if } \delta > 0\\ 1 - \frac{\Gamma\left(\delta^{-2}, \delta^{-2} \exp(\delta w)\right)}{\Gamma(\delta^{-2})} & \text{if } \delta < 0 \end{cases}\\ f(w) &= \frac{|\delta|}{\Gamma\left(\delta^{-2}\right)} \left(\delta^{-2} \exp(\delta w)\right)^{\delta^{-2}} \exp\left(-\exp(\delta w)\delta^{-2}\right)\\ G(t) &= \begin{cases} \frac{\Gamma\left(\delta^{-2}, \delta^{-2} t^{\delta}\right)}{\Gamma(\delta^{-2})} & \text{if } \delta > 0\\ 1 - \frac{\Gamma\left(\delta^{-2}, \delta^{-2} t^{\delta}\right)}{\Gamma(\delta^{-2})} & \text{if } \delta < 0 \end{cases}\\ g(t) &= \frac{|\delta|}{t\Gamma\left(\delta^{-2}\right)} \left(\delta^{-2} t^{\delta}\right)^{\delta^{-2}} \exp\left(-t^{\delta}\delta^{-2}\right) \end{split}$$

where  $\Gamma(a)$  denotes the complete gamma function,  $\Gamma(a, z)$  denotes the incomplete gamma function, and  $\delta$  is a free shape parameter. The  $\delta$  parameter is referred to as Shape by PROC LIFEREG. Refer to Lawless, 1982, p.240 and Klein and Moeschberger, 1997, p.386 for a description of the generalized gamma distribution.

## Loglogistic

$$S(w) = \left(1 + \exp\left(\frac{w - \mu}{\sigma}\right)\right)^{-1}$$
$$f(w) = \frac{\exp\left(\frac{w - \mu}{\sigma}\right)}{\sigma\left(1 + \exp\left(\frac{w - \mu}{\sigma}\right)\right)^2}$$
$$G(t) = \frac{1}{1 + \alpha t^{\gamma}}$$
$$g(t) = \frac{\alpha \gamma t^{\gamma - 1}}{\left(1 + \alpha t^{\gamma}\right)^2}$$

where  $\gamma = 1/\sigma$  and  $\alpha = \exp(-\mu/\sigma)$ .

Lognormal

$$S(w) = 1 - \Phi\left(\frac{w - \mu}{\sigma}\right)$$
$$f(w) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2}\left(\frac{w - \mu}{\sigma}\right)^2\right)$$

$$G(t) = 1 - \Phi\left(\frac{\log(t) - \mu}{\sigma}\right)$$
$$g(t) = \frac{1}{\sqrt{2\pi\sigma t}} \exp\left(-\frac{1}{2}\left(\frac{\log(t) - \mu}{\sigma}\right)^2\right)$$

where  $\Phi$  is the cumulative distribution function for the normal distribution.

#### Weibull

$$S(w) = \exp\left(-exp\left(\frac{w-\mu}{\sigma}\right)\right)$$

$$f(w) = \frac{1}{\sigma}\exp\left(\frac{w-\mu}{\sigma}\right)\exp\left(-\exp\left(\frac{w-\mu}{\sigma}\right)\right)$$

$$G(t) = \exp\left(-\alpha t^{\gamma}\right)$$

$$g(t) = \gamma \alpha t^{\gamma-1}\exp\left(-\alpha t^{\gamma}\right)$$

where  $\sigma = 1/\gamma$  and  $\alpha = \exp(-\mu/\sigma)$ .

If your parameterization is different from the ones shown here, you can still use the procedure to fit your model. For example, a common parameterization for the Weibull distribution is

$$g(t;\lambda,\beta) = \left(\frac{\beta}{\lambda}\right)^{\beta} \left(\frac{t}{\alpha}\right)^{\beta-1} \exp\left(-\left(\frac{t}{\lambda}\right)^{\beta}\right)$$
$$G(t;\lambda,\beta) = \exp\left(-\left(\frac{t}{\lambda}\right)^{\beta}\right)$$

so that  $\lambda = \exp(\mu)$  and  $\beta = 1/\sigma$ .

Again note that the expected value of the baseline log response is, in general, not zero and that the distributions are not symmetric in all cases. Thus, for a given set of covariates,  $\mathbf{x}$ , the expected value of the log response is not always  $\mathbf{x}'\beta$ .

Some relations among the distributions are as follows:

- The gamma with Shape=1 is a Weibull distribution.
- The gamma with Shape=0 is a lognormal distribution.
- The Weibull with Scale=1 is an exponential distribution.

## **Predicted Values**

For a given set of covariates,  $\mathbf{x}$  (including the intercept term), the *p*th quantile of the log response,  $y_p$ , is given by

$$y_p = \mathbf{x}'\beta + \sigma w_p$$

where  $w_p$  is the *p*th quantile of the baseline distribution. The estimated quantile is computed by replacing the unknown parameters with their estimates, including any shape parameters on which the baseline distribution might depend. The estimated quantile of the original response is obtained by taking the exponential of the estimated log quantile unless the NOLOG option is specified in the preceding MODEL statement.

The standard errors of the quantile estimates are computed using the estimated covariance matrix of the parameter estimates and a Taylor series expansion of the quantile estimate. The standard error is computed as

$$STD = \sqrt{\mathbf{z}' \mathbf{V} \mathbf{z}}$$

where **V** is the estimated covariance matrix of the parameter vector  $(\beta', \sigma, \delta)'$ , and **z** is the vector

$$\mathbf{z} = \begin{bmatrix} \mathbf{x} \\ \hat{w}_p \\ \hat{\sigma} \frac{\partial w_p}{\partial \delta} \end{bmatrix}$$

where  $\delta$  is the vector of the shape parameters. Unless the NOLOG option is specified, this standard error estimate is converted into a standard error estimate for  $\exp(y_p)$ as  $\exp(\hat{y}_p)$ STD. It may be more desirable to compute confidence limits for the log response and convert them back to the original response variable than to use the standard error estimates for  $\exp(y_p)$  directly. See Example 36.1 for a 90% confidence interval of the response constructed by exponentiating a confidence interval for the log response.

The variable, CDF, is computed as

$$CDF_i = F(w_i)$$

where the residual

$$w_i = \left(rac{y_i - \mathbf{x'}_i \mathbf{b}}{\hat{\sigma}}
ight)$$

and F is the baseline cumulative distribution function.

## **OUTEST= Data Set**

The OUTEST= data set contains parameter estimates and the log likelihood for the specified models. A set of observations is created for each MODEL statement specified. You can specify a label in the MODEL statement to distinguish between the estimates for different MODEL statements. If the COVOUT option is specified, the OUTEST= data set also contains the estimated covariance matrix of the parameter estimates. Note that, if the LIFEREG procedure does not converge, the parameter estimates are set to missing in the OUTEST data set.

The OUTEST= data set is not created if there are any CLASS variables in any models. If created, this data set contains all variables specified in the MODEL statement and the BY statement. One observation consists of parameter values for the model with the dependent variable having the value -1. If the COVOUT option is specified, there are additional observations containing the rows of the estimated covariance matrix. For these observations, the dependent variable contains the parameter estimate for the corresponding row variable. The following variables are also added to the data set:

| _MODEL_   | a character variable of length 8 containing the label of the MODEL statement, if present. Otherwise, the variable's value is blank.                                                        |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _NAME_    | a character variable of length 8 containing the name of the depen-<br>dent variable for the parameter estimates observations or the name<br>of the row for the covariance matrix estimates |
| _TYPE_    | a character variable of length 8 containing the type of the observa-<br>tion, either PARMS for parameter estimates or COV for covariance<br>estimates                                      |
| _DIST_    | a character variable of length 8 containing the name of the distribution modeled                                                                                                           |
| _LNLIKE_  | a numeric variable containing the last computed value of the log likelihood                                                                                                                |
| INTERCEPT | a numeric variable containing the intercept parameter estimates and covariances                                                                                                            |
| _SCALE_   | a numeric variable containing the scale parameter estimates and covariances                                                                                                                |
| _SHAPE1_  | a numeric variable containing the first shape parameter estimates<br>and covariances if the specified distribution has additional shape<br>parameters                                      |
|           |                                                                                                                                                                                            |

Any BY variables specified are also added to the OUTEST= data set.

## **Computational Resources**

Let p be the number of parameters estimated in the model. The minimum working space (in bytes) needed is

$$16p^2 + 100p$$

However, if sufficient space is available, the input data set is also kept in memory; otherwise, the input data set is reread for each evaluation of the likelihood function and its derivatives, with the resulting execution time of the procedure substantially increased.

Let n be the number of observations used in the model estimation. Each evaluation of the likelihood function and its first and second derivatives requires  $O(np^2)$  multiplications and additions, n individual function evaluations for the log density or log distribution function, and n evaluations of the first and second derivatives of the function. The calculation of each updating step from the gradient and Hessian requires  $O(p^3)$  multiplications and additions. The O(v) notation means that, for large values of the argument, v, O(v) is approximately a constant times v.

## **Displayed Output**

For each model, PROC LIFEREG displays

- the name of the Data Set
- the name of the Dependent Variable
- the name of the Censoring Variable
- the Censoring Value(s) that indicate a censored observation
- the number of Noncensored and Censored Values
- the final estimate of the maximized log likelihood
- the iteration history and the Last Evaluation of the Gradient and Hessian if the ITPRINT option is specified (not shown)

For each explanatory variable in the model, the LIFEREG procedure displays

- the name of the Variable
- the degrees of freedom (DF) associated with the variable in the model
- the Estimate of the parameter
- the standard error (Std Err) estimate from the observed information matrix
- an approximate chi-square statistic for testing that the parameter is zero (the class variables also have an overall chi-square test statistic computed that precedes the individual level parameters)
- the probability of a larger chi-square value (Pr>Chi)
- the Label of the variable or, if the variable is a class level, the Value of the class variable

If there are constrained parameters in the model, such as the scale or intercept, then PROC LIFEREG displays a Lagrange multiplier test for the constraint.

## **ODS Table Names**

PROC LIFEREG assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the following table. For more information on ODS, see Chapter 15, "Using the Output Delivery System."

| ODS Table Name     | Description                           | Statement | Option          |
|--------------------|---------------------------------------|-----------|-----------------|
| ClassLevels        | Class variable levels                 | CLASS     | default*        |
| ConvergenceStatus  | Convergence status                    | MODEL     | default         |
| CorrB              | Parameter estimate correlation matrix | MODEL     | CORRB           |
| CovB               | Parameter estimate covariance matrix  | MODEL     | COVB            |
| IterHistory        | Iteration history                     | MODEL     | ITPRINT         |
| LagrangeStatistics | Lagrange statistics                   | MODEL     | NOINT   NOSCALE |
| LastGrad           | Last Evaluation of the Gradient       | MODEL     | ITPRINT         |
| LastHess           | Last Evaluation of the Hessian        | MODEL     | ITPRINT         |
| ParameterEstimates | Parameter estimates                   | MODEL     | default         |
| ModelInfo          | Model information                     | MODEL     | default         |

Table 36.1. ODS Tables Produced in PROC LIFEREG

\* Depends on data.

# **Examples**

## Example 36.1. Motorette Failure

This example fits a Weibull model and a lognormal model to the example given in Kalbfleisch and Prentice (1980, p. 5). An output data set called **models** is specified to contain the parameter estimates. By default, the natural log of the variable time is used by the procedure as the response. After this log transformation, the Weibull model is fit using the extreme value baseline distribution, and the lognormal is fit using the normal baseline distribution.

Since the extreme value and normal distributions do not contain any shape parameters, the variable SHAPE1 is missing in the models data set. An additional output data set, out, is requested that contains the predicted quantiles and their standard errors for values of the covariate corresponding to temp=130 and temp=150. This is done with the control variable, which is set to 1 for only two observations.

Using the standard error estimates obtained from the output data set, approximate 90% confidence limits for the predicted quantities are then created in a subsequent DATA step for the log response. The logs of the predicted values are obtained because the values of the P= variable in the OUT= data set are in the same units as the original response variable, time. The standard errors of the quantiles of the log(time) are approximated (using a Taylor series approximation) by the standard deviation of time divided by the mean value of time. These confidence limits are then converted back to the original scale by the exponential function. The following statements produce Output 36.1.1 through Output 36.1.5.

```
title 'Motorette Failures With Operating Temperature as a Covariate';
data motors;
   input time censor temp @@;
   if _N_=1 then
      do;
         temp=130;
         time=.;
         control=1;
         z=1000/(273.2+temp);
         output;
         temp=150;
         time=.;
         control=1;
         z=1000/(273.2+TEMP);
         output;
      end;
   if temp>150;
   control=0;
   z=1000/(273.2+temp);
   output;
   datalines;
8064 0 150 8064 0 150 8064 0 150 8064 0 150 8064 0 150
8064 0 150 8064 0 150 8064 0 150 8064 0 150 8064 0 150
1764 1 170 2772 1 170 3444 1 170 3542 1 170 3780 1 170
4860 1 170 5196 1 170 5448 0 170 5448 0 170 5448 0 170
408 1 190 408 1 190 1344 1 190 1344 1 190 1440 1 190
1680 0 190 1680 0 190 1680 0 190 1680 0 190 1680 0 190
408 1 220 408 1 220 504 1 220 504 1 220 504 1 220
528 0 220 528 0 220 528 0 220 528 0 220 528 0 220
;
proc print data=motors;
run;
proc lifereg data=motors outest=models covout;
  a: model time*censor(0)=z;
  b: model time*censor(0)=z / dist=lnormal;
         output out=out quantiles=.1 .5 .9 std=std p=predtime
         control=control;
run;
proc print data=models;
   id _model_;
   title 'fitted models';
run;
data out1;
   set out;
   ltime=log(predtime);
   stde=std/predtime;
   upper=exp(ltime+1.64*stde);
   lower=exp(ltime-1.64*stde);
proc print;
   id temp;
   title 'quantile estimates and confidence limits';
run;
```

## 1788 • Chapter 36. The LIFEREG Procedure

| Motoret | te Failure | es With Ope | erating T | emperature | as a Covariate |  |
|---------|------------|-------------|-----------|------------|----------------|--|
| Obs     | time       | censor      | temp      | control    | z              |  |
| 1       |            | 0           | 130       | 1          | 2.48016        |  |
| 2       |            | 0           | 150       | 1          | 2.36295        |  |
| 3       | 1764       | 1           | 170       | 0          | 2.25632        |  |
| 4       | 2772       | 1           | 170       | 0          | 2.25632        |  |
| - 5     | 3444       | 1           | 170       | 0          | 2.25632        |  |
| 6       | 3542       | 1           | 170       | 0          | 2.25632        |  |
| 7       | 3780       | 1           | 170       | 0          | 2.25632        |  |
| 8       | 4860       | 1           | 170       | 0          | 2.25632        |  |
| 9       | 5196       | 1           | 170       | 0          | 2.25632        |  |
| 10      | 5448       | 0           | 170       | 0          | 2.25632        |  |
| 11      | 5448       | 0           | 170       | 0          | 2.25632        |  |
| 12      | 5448       | 0           | 170       | 0          | 2.25632        |  |
| 13      | 408        | 1           | 190       | 0          | 2.15889        |  |
| 14      | 408        | 1           | 190       | 0          | 2.15889        |  |
| 15      | 1344       | 1           | 190       | 0          | 2.15889        |  |
| 16      | 1344       | 1           | 190       | 0          | 2.15889        |  |
| 17      | 1440       | 1           | 190       | 0          | 2.15889        |  |
| 18      | 1680       | 0           | 190       | 0          | 2.15889        |  |
| 19      | 1680       | 0           | 190       | 0          | 2.15889        |  |
| 20      | 1680       | 0           | 190       | 0          | 2.15889        |  |
| 21      | 1680       | 0           | 190       | 0          | 2.15889        |  |
| 22      | 1680       | 0           | 190       | 0          | 2.15889        |  |
| 23      | 408        | 1           | 220       | 0          | 2.02758        |  |
| 24      | 408        | 1           | 220       | 0          | 2.02758        |  |
| 25      | 504        | 1           | 220       | 0          | 2.02758        |  |
| 26      | 504        | 1           | 220       | 0          | 2.02758        |  |
| 27      | 504        | 1           | 220       | 0          | 2.02758        |  |
| 28      | 528        | 0           | 220       | 0          | 2.02758        |  |
| 29      | 528        | 0           | 220       | 0          | 2.02758        |  |
| 30      | 528        | 0           | 220       | 0          | 2.02758        |  |
| 31      | 528        | 0           | 220       | 0          | 2.02758        |  |
| 32      | 528        | 0           | 220       | 0          | 2.02758        |  |
|         |            |             |           |            |                |  |

## Output 36.1.1. Motorette Failure Data

Output 36.1.2. Motorette Failure: Model A

|           |    |           | The LIFE     | REG Procedu | ire          |                     |  |  |
|-----------|----|-----------|--------------|-------------|--------------|---------------------|--|--|
|           |    |           | Model        | Information | 1            |                     |  |  |
|           |    | Data Se   | et           |             | WORK . MOTOR | RS                  |  |  |
|           |    | Depende   | ent Variabl  | Э           | Log(time     | e)                  |  |  |
|           |    | Censori   | ing Variabl  | e           | censo        | or                  |  |  |
|           |    | Censor    | ing Value(s  | )           |              | 0                   |  |  |
|           |    | Number    | of Observa   | tions       | 3            | 30                  |  |  |
|           |    | Noncens   | sored Value  | 3           | 1            | 17                  |  |  |
|           |    | Right (   | Censored Va  | lues        | 13           |                     |  |  |
|           |    | Left Ce   | ensored Val  | les         | 0            |                     |  |  |
|           |    | Interva   | al Censored  | Values      |              | 0                   |  |  |
|           |    | Missing   | y Values     |             |              | 2                   |  |  |
|           |    | Name of   | E Distribut  | ion         | WEIBUI       | LL                  |  |  |
|           |    | Log Lił   | celihood     |             | -22.9514833  | 15                  |  |  |
|           |    | Ana       | alysis of Pa | arameter Es | timates      |                     |  |  |
|           |    |           | Standard     |             |              |                     |  |  |
| Variable  | DF | Estimate  | Error        | Chi-Square  | Pr > ChiSq   | Label               |  |  |
| Intercept | 1  | -11.89122 | 1.96551      | 36.6019     | <.0001       | Intercept           |  |  |
| z         | 1  | 9.03834   | 0.90599      | 99.5239     | <.0001       |                     |  |  |
| Scale     | 1  | 0.36128   | 0.07950      |             |              | Extreme value scale |  |  |

|             | The LIFEREG           | Procedure             |                |  |  |  |  |  |  |  |  |  |  |  |
|-------------|-----------------------|-----------------------|----------------|--|--|--|--|--|--|--|--|--|--|--|
|             |                       |                       |                |  |  |  |  |  |  |  |  |  |  |  |
|             | Model Info            | rmation               |                |  |  |  |  |  |  |  |  |  |  |  |
|             | Data Set WORK.MOTORS  |                       |                |  |  |  |  |  |  |  |  |  |  |  |
|             | Dependent Variable    | Log(time)             |                |  |  |  |  |  |  |  |  |  |  |  |
|             | Censoring Variable    | censor                |                |  |  |  |  |  |  |  |  |  |  |  |
|             | Censoring Value(s)    | 0                     |                |  |  |  |  |  |  |  |  |  |  |  |
|             | Number of Observation | .s 30                 |                |  |  |  |  |  |  |  |  |  |  |  |
|             | Noncensored Values    | 17                    |                |  |  |  |  |  |  |  |  |  |  |  |
|             | Right Censored Values | 13                    |                |  |  |  |  |  |  |  |  |  |  |  |
|             | Left Censored Values  | 0                     |                |  |  |  |  |  |  |  |  |  |  |  |
|             | Interval Censored Val | ues 0                 |                |  |  |  |  |  |  |  |  |  |  |  |
|             | Missing Values        | 2                     |                |  |  |  |  |  |  |  |  |  |  |  |
|             | Name of Distribution  | LNORMAL               |                |  |  |  |  |  |  |  |  |  |  |  |
|             | Log Likelihood        | -24.47381031          |                |  |  |  |  |  |  |  |  |  |  |  |
|             |                       |                       |                |  |  |  |  |  |  |  |  |  |  |  |
|             |                       |                       |                |  |  |  |  |  |  |  |  |  |  |  |
|             | Analysis of Param     | eter Estimates        |                |  |  |  |  |  |  |  |  |  |  |  |
|             | Standard              |                       |                |  |  |  |  |  |  |  |  |  |  |  |
| Variable DF | Estimate Error        | Chi-Square Pr > ChiSq | Label          |  |  |  |  |  |  |  |  |  |  |  |
|             | 10 48056 0 88100      | 14 0605 0 0000        | <b>T</b> - 1 1 |  |  |  |  |  |  |  |  |  |  |  |
|             | -10.47056 2.77192     |                       | Intercept      |  |  |  |  |  |  |  |  |  |  |  |
| z 1         |                       | 42.0001 <.0001        |                |  |  |  |  |  |  |  |  |  |  |  |
| Scale 1     | 0.60403 0.11073       |                       | Normal scale   |  |  |  |  |  |  |  |  |  |  |  |
|             |                       |                       |                |  |  |  |  |  |  |  |  |  |  |  |

Output 36.1.3. Motorette Failure: Model B

Output 36.1.4. Motorette Failure: Fitted Models

|         | fitted models |        |         |             |          |           |          |          |          |          |  |  |  |
|---------|---------------|--------|---------|-------------|----------|-----------|----------|----------|----------|----------|--|--|--|
| _MODEL_ | _NAME_        | _TYPE_ | _DIST_  | _STATUS_    | _LNLIKE_ | Intercept | time     | z        | _SCALE_  | _SHAPE1_ |  |  |  |
| A       | time          | PARMS  | WEIBULL | 0 Converged | -22.9515 | -11.8912  | -1.0000  | 9.03834  | 0.36128  |          |  |  |  |
| A       | Intercept     | COV    | WEIBULL | 0 Converged | -22.9515 | 3.8632    | -11.8912 | -1.77878 | 0.03448  |          |  |  |  |
| A       | z             | COV    | WEIBULL | 0 Converged | -22.9515 | -1.7788   | 9.0383   | 0.82082  | -0.01488 |          |  |  |  |
| A       | Scale         | COV    | WEIBULL | 0 Converged | -22.9515 | 0.0345    | 0.3613   | -0.01488 | 0.00632  |          |  |  |  |
| в       | time          | PARMS  | LNORMAL | 0 Converged | -24.4738 | -10.4706  | -1.0000  | 8.32208  | 0.60403  |          |  |  |  |
| в       | Intercept     | COV    | LNORMAL | 0 Converged | -24.4738 | 7.6835    | -10.4706 | -3.55566 | 0.03267  |          |  |  |  |
| в       | z             | COV    | LNORMAL | 0 Converged | -24.4738 | -3.5557   | 8.3221   | 1.64897  | -0.01285 |          |  |  |  |
| в       | Scale         | COV    | LNORMAL | 0 Converged | -24.4738 | 0.0327    | 0.6040   | -0.01285 | 0.01226  | •        |  |  |  |
|         |               |        |         |             |          |           |          |          |          |          |  |  |  |

**Output 36.1.5.** Motorette Failure: Quantile Estimates and Confidence Limits

| quantile estimates and confidence limits |      |        |         |         |        |          |          |         |         |           |          |
|------------------------------------------|------|--------|---------|---------|--------|----------|----------|---------|---------|-----------|----------|
| temp                                     | time | censor | control | z       | _PROB_ | PREDTIME | STD      | ltime   | stde    | upper     | lower    |
| 130                                      |      | 0      | 1       | 2.48016 | 0.1    | 12033.19 | 5482.34  | 9.3954  | 0.45560 | 25402.68  | 5700.09  |
| 130                                      |      | 0      | 1       | 2.48016 | 0.5    | 26095.68 | 11359.45 | 10.1695 | 0.43530 | 53285.36  | 12779.95 |
| 130                                      |      | 0      | 1       | 2.48016 | 0.9    | 56592.19 | 26036.90 | 10.9436 | 0.46008 | 120349.65 | 26611.42 |
| 150                                      |      | 0      | 1       | 2.36295 | 0.1    | 4536.88  | 1443.07  | 8.4200  | 0.31808 | 7643.71   | 2692.83  |
| 150                                      |      | 0      | 1       | 2.36295 | 0.5    | 9838.86  | 2901.15  | 9.1941  | 0.29487 | 15957.38  | 6066.36  |
| 150                                      |      | 0      | 1       | 2.36295 | 0.9    | 21336.97 | 7172.34  | 9.9682  | 0.33615 | 37029.72  | 12294.62 |

## Example 36.2. Computing Predicted Values for a Tobit Model

The LIFEREG Procedure can be used to perform a Tobit analysis. The Tobit model, described by Tobin (1958), is a regression model for left censored data assuming a normally distributed error term. The model parameters are estimated by maximum likelihood. PROC LIFEREG provides estimates of the parameters of the distribution of the **uncensored** data. Refer to Greene (1993) and Maddala (1983) for a more complete discussion of censored normal data and related distributions. This example shows how you can use PROC LIFEREG and the data step to compute two of the three types of predicted values discussed there.

Consider a continuous random variable Y, and a constant C. If you were to sample from the distribution of Y but discard values less than (greater than) C, the distribution of the remaining observations would be **truncated** on the left (right). If you were to sample from the distribution of Y and report values less than (greater than) C as C, the distribution of the sample would be left (right) **censored**.

The probability density function of the truncated random variable Y' is given by

$$f_{\mathbf{Y}'}(y) = \frac{f_{\mathbf{Y}}(y)}{\Pr(\mathbf{Y} > \mathbf{C})}$$
 for  $y > \mathbf{C}$ 

where  $f_{Y}(y)$  is the probability density function of Y. PROC LIFEREG cannot compute the proper likelihood function to estimate parameters or predicted values for a truncated distribution.

Suppose the model being fit is specified as follows:

$$\mathbf{Y}_i^* = \mathbf{x}_i' \boldsymbol{\beta} + \boldsymbol{\epsilon}_i$$

where  $\epsilon_i$  is a normal error term with zero mean and standard deviation  $\sigma$ .

Define the censored random variable  $Y_i$  as

$$\begin{array}{rcl} {
m Y}_i & = & 0 \ \ {
m if} \ \ {
m Y}_i^* \leq 0 \ \ {
m Y}_i & = & {
m Y}_i^* \ \ {
m if} \ \ {
m Y}_i^* > 0 \end{array}$$

This is the Tobit model for left-censored normal data.  $Y_i^*$  is sometimes called the *latent variable*. PROC LIFEREG estimates parameters of the distribution of  $Y_i^*$  by maximum likelihood.

You can use the LIFEREG procedure to compute predicted values based on the mean functions of the latent and observed variables. The mean of the latent variable  $Y_i^*$  is  $\mathbf{x}_i'\beta$  and you can compute values of the mean for different settings of  $\mathbf{x}_i$  by specifying XBETA=*variable-name* in an OUTPUT statement. Estimates of  $\mathbf{x}_i'\beta$  for each observation will be written to the OUT= data set. Predicted values of the observed variable  $Y_i$  can be computed based on the mean

$$E(\mathbf{Y}_i) = \Phi\left(\frac{\mathbf{x}_i'\beta}{\sigma}\right) \left(\mathbf{x}_i'\beta + \sigma\lambda_i\right)$$

where

$$\lambda_i = \frac{\phi(\mathbf{x}_i'\beta/\sigma)}{\Phi(\mathbf{x}_i'\beta/\sigma)}$$

 $\phi$  and  $\Phi$  represent the normal probability density and cumulative distribution functions.

The following table shows a subset of the Mroz (1987) data set. In this data, Hours is the number of hours the wife worked outside the household in a given year, Yrs\_Ed is the years of education, and Yrs\_Exp is the years of work experience. A Tobit model will be fit to the hours worked with years of education and experience as covariates.

| Hours | Yrs_Ed | Yrs_Exp |
|-------|--------|---------|
| 0     | 8      | 9       |
| 0     | 8      | 12      |
| 0     | 9      | 10      |
| 0     | 10     | 15      |
| 0     | 11     | 4       |
| 0     | 11     | 6       |
| 1000  | 12     | 1       |
| 1960  | 12     | 29      |
| 0     | 13     | 3       |
| 2100  | 13     | 36      |
| 3686  | 14     | 11      |
| 1920  | 14     | 38      |
| 0     | 15     | 14      |
| 1728  | 16     | 3       |
| 1568  | 16     | 19      |
| 1316  | 17     | 7       |
| 0     | 17     | 15      |

If the wife was not employed (worked 0 hours), her hours worked will be left censored at zero. In order to accommodate left censoring in PROC LIFEREG, you need two variables to indicate censoring status of observations. You can think of these variables as lower and upper endpoints of interval censoring. If there is no censoring, set both variables to the observed value of Hours. To indicate left censoring, set the lower endpoint to missing and the upper endpoint to the censored value, zero in this case.

The following statements create a SAS data set with the variables Hours, Yrs\_Ed, and Yrs\_Exp from the data above. A new variable, Lower is created such that Lower=. if Hours=0 and Lower=Hours if Hours>0.

```
data subset;
    input Hours Yrs_Ed Yrs_Exp @@;
    if Hours eq 0
        then Lower=.;
    else Lower=Hours;
datalines;
0 8 9 0 8 12 0 9 10 0 10 15 0 11 4 0 11 6
1000 12 1 1960 12 29 0 13 3 2100 13 36
3686 14 11 1920 14 38 0 15 14 1728 16 3
1568 16 19 1316 17 7 0 17 15
;
```

The following statements fit a normal regression model to the left censored Hours data using Yrs\_Ed and Yrs\_Exp as covariates. You will need the estimated standard

deviation of the normal distribution to compute the predicted values of the censored distribution from the formulas above. The data set OUTEST contains the standard deviation estimate in a variable named  $\_SCALE\_$ . You also need estimates of  $\mathbf{x}'_i\beta$ . These are contained in the data set OUT as the variable Xbeta

```
proc lifereg data=subset outest=OUTEST(keep=_scale_);
  model (lower, hours) = yrs_ed yrs_exp / d=normal;
  output out=OUT xbeta=Xbeta;
run;
```

Output 36.2.1 shows the results of the model fit. These tables show parameter estimates for the uncensored, or latent variable, distribution.

Output 36.2.1. Parameter Estimates from PROC LIFEREG

```
The LIFEREG Procedure
                         Model Information
                                          WORK.SUBSET
              Data Set
              Dependent Variable
                                                Lower
              Dependent Variable
                                                Hours
              Number of Observations
                                                   17
              Noncensored Values
                                                    8
              Right Censored Values
                                                    0
              Left Censored Values
                                                    9
              Interval Censored Values
                                                    0
              Name of Distribution
                                               NORMAL
              Log Likelihood
                                          -74.9369977
                  Analysis of Parameter Estimates
                          Standard
Variable DF
             Estimate
                             Error Chi-Square Pr > ChiSq Label
                                                  0.0495 Intercept
Intercept 1
                -5598.6
                            2850.2
                                       3.8583
Yrs_Ed
           1 373.14771 191.88717
                                       3.7815
                                                  0.0518
Yrs_Exp
           1
               63.33711
                         38.36317
                                       2.7258
                                                  0.0987
Scale
           1
                 1582.9 442.67318
                                                         Normal scale
```

The following statements combine the two data sets created by PROC LIFEREG to compute predicted values for the censored distribution. The OUTEST= data set contains the estimate of the standard deviation from the uncensored distribution, and the OUT= data set contains estimates of  $\mathbf{x}'_i \boldsymbol{\beta}$ .

#### 1793

Output 36.2.2 shows the original variables, the predicted means of the uncensored distribution, and the predicted means of the censored distribution.

| Hours | Lower | Yrs_Ed | Yrs_Exp | MEAN OF<br>UNCENSORED<br>VARIABLE | MEAN OF<br>CENSORED<br>VARIABLE |  |
|-------|-------|--------|---------|-----------------------------------|---------------------------------|--|
| 0     |       | 8      | 9       | -2043.42                          | 73.46                           |  |
| 0     |       | 8      | 12      | -1853.41                          | 94.23                           |  |
| 0     |       | 9      | 10      | -1606.94                          | 128.10                          |  |
| 0     |       | 10     | 15      | -917.10                           | 276.04                          |  |
| 0     |       | 11     | 4       | -1240.67                          | 195.76                          |  |
| 0     |       | 11     | 6       | -1113.99                          | 224.72                          |  |
| 1000  | 1000  | 12     | 1       | -1057.53                          | 238.63                          |  |
| 1960  | 1960  | 12     | 29      | 715.91                            | 1052.94                         |  |
| 0     |       | 13     | 3       | -557.71                           | 391.42                          |  |
| 2100  | 2100  | 13     | 36      | 1532.42                           | 1672.50                         |  |
| 3686  | 3686  | 14     | 11      | 322.14                            | 805.58                          |  |
| 1920  | 1920  | 14     | 38      | 2032.24                           | 2106.81                         |  |
| 0     | •     | 15     | 14      | 885.30                            | 1170.39                         |  |
| 1728  | 1728  | 16     | 3       | 561.74                            | 951.69                          |  |
| 1568  | 1568  | 16     | 19      | 1575.13                           | 1708.24                         |  |
| 1316  | 1316  | 17     | 7       | 1188.23                           | 1395.61                         |  |
| 0     |       | 17     | 15      | 1694.93                           | 1809.97                         |  |

Output 36.2.2. Predicted Means from PROC LIFEREG

## Example 36.3. Overcoming Convergence Problems by Specifying Initial Values

This example illustrates the use of parameter initial value specification to help overcome convergence difficulties.

The following statements create a data set and request a Weibull regression model be fit to the data.

```
data raw;
  input censor x c1 @@;
  datalines;
0 16 0.00 0 17 0.00 0 18 0.00
0 17 0.04 0 18 0.04 0 18 0.04
0 23 0.40 0 22 0.40 0 22 0.40
0 33 4.00 0 34 4.00 0 35 4.00
1 54 40.00 1 54 40.00 1 54 40.00
1 54 400.00 1 54 400.00 1 54 400.00
;
run;
proc print;
run;
title 'OLS (default) initial values';
proc lifereg data=raw;
  model x*censor(1) = c1 / distribution = weibull itprint;
run;
```

Output 36.3.1 shows the data set contents.

#### 1794 • Chapter 36. The LIFEREG Procedure

| Obs | censor | x  | c1     |
|-----|--------|----|--------|
| 1   | 0      | 16 | 0.00   |
| 2   | 0      | 17 | 0.00   |
| 3   | 0      | 18 | 0.00   |
|     | 0      | 17 | 0.04   |
| 4   |        |    |        |
| 5   | 0      | 18 | 0.04   |
| 6   | 0      | 18 | 0.04   |
| 7   | 0      | 23 | 0.40   |
| 8   | 0      | 22 | 0.40   |
| 9   | 0      | 22 | 0.40   |
| 10  | 0      | 33 | 4.00   |
| 11  | 0      | 34 | 4.00   |
| 12  | 0      | 35 | 4.00   |
| 13  | 1      | 54 | 40.00  |
| 14  | 1      | 54 | 40.00  |
| 15  | 1      | 54 | 40.00  |
| 16  | 1      | 54 | 400.00 |
| 17  | 1      | 54 | 400.00 |
| 18  | 1      | 54 | 400.00 |

| Output 36.3.1. C | ontents of the Data Set |
|------------------|-------------------------|
|------------------|-------------------------|

Convergence was not attained in 50 iterations for this model, as the messages to the log indicate:

#### WARNING: Convergence not attained in 50 iterations. WARNING: The procedure is continuing but the validity of the model fit is questionable.

The first line (iter=0) of the iteration history table, in Output 36.3.2, shows the default initial ordinary least squares (OLS) estimates of the parameters.

Output 36.3.2. Initial Least Squares

|      |       | OLS (default) initial values |              |              |              |  |  |  |  |  |  |
|------|-------|------------------------------|--------------|--------------|--------------|--|--|--|--|--|--|
| Iter | Ridge | Loglike                      | Intercept    | cl           | Scale        |  |  |  |  |  |  |
| 0    | 0     | -22.891088                   | 3.2324769714 | 0.0020664542 | 0.3995754195 |  |  |  |  |  |  |

The log logistic distribution is more robust to large values of the response than the Weibull, so one approach to improving the convergence performance is to fit a log logistic distribution, and if this converges, use the resulting parameter estimates as initial values in a subsequent fit of a model with the Weibull distribution.

The following statements fit a log logistic distribution to the data.

```
proc lifereg data=raw;
  model x*censor(1) = c1 / distribution = llogistic;
run;
```

The algorithm converges, and the maximum likelihood estimates for the log logistic distribution are shown in Output 36.3.3

|           |      | 2          | The LIFEREG | Procedure   |            |                |
|-----------|------|------------|-------------|-------------|------------|----------------|
|           |      |            | Model Inf   | ormation    |            |                |
|           | 1    | Data Set   |             |             | WORK.RAW   |                |
|           | 1    | Dependent  | Variable    |             | Log(x)     |                |
|           | (    | Censoring  | Variable    |             | censor     |                |
|           | (    | Censoring  | Value(s)    |             | 1          |                |
|           | 1    | Number of  | Observatio  | ons         | 18         |                |
|           | 1    | Noncensore | ed Values   |             | 12         |                |
|           | 1    | Right Cens | sored Value | s           | б          |                |
|           |      |            | ored Values | -           | 0          |                |
|           | :    | Interval ( | Censored Va | alues       | 0          |                |
|           | 1    | Name of Di | istributior | ı           | LLOGISTC   |                |
|           | 1    | Log Likeli | ihood       | 12          | .093136846 |                |
|           |      | Analys     | sis of Para | ameter Esti | mates      |                |
|           |      |            | Standard    |             |            |                |
| Variable  | DF 1 | Estimate   | Error       | Chi-Square  | Pr > ChiSq | Label          |
| Intercept | 1    | 2.89828    | 0.03179     | 8309.4488   | <.0001     | Intercept      |
| c1        | 1    | 0.15921    | 0.01327     | 143.8537    | <.0001     |                |
| Scale     | 1    | 0.04979    | 0.01218     |             |            | Logistic scale |

Output 36.3.3. Estimates from the Log Logistic Distribution

The following statements re-fit the Weibull model using the maximum likelihood estimates from the log logistic fit as initial values.

Examination of the resulting output in Output 36.3.4 shows that the convergence problem has been solved by specifying different initial values.

|           |                   |          | The LIF     | EREG Proced | ure   |         |                     |  |  |  |  |  |  |  |
|-----------|-------------------|----------|-------------|-------------|-------|---------|---------------------|--|--|--|--|--|--|--|
|           |                   |          | Model       | Informatic  | n     |         |                     |  |  |  |  |  |  |  |
|           | Data Set WORK.RAW |          |             |             |       |         |                     |  |  |  |  |  |  |  |
|           |                   | Depende  | ent Variab  | le          |       | Log(:   | x)                  |  |  |  |  |  |  |  |
|           |                   | Censori  | ng Variab   | le          |       | censo   | or                  |  |  |  |  |  |  |  |
|           |                   | Censori  | ing Value(  | s)          |       |         | 1                   |  |  |  |  |  |  |  |
|           |                   | Number   | of Observa  | ations      |       |         | 18                  |  |  |  |  |  |  |  |
|           |                   | Noncens  | sored Value | es          |       | 2       | 12                  |  |  |  |  |  |  |  |
|           |                   | Right (  | Censored Va | alues       |       |         | 6                   |  |  |  |  |  |  |  |
|           |                   |          | ensored Va  |             |       |         | 0                   |  |  |  |  |  |  |  |
|           |                   |          | al Censore  |             |       |         | 0                   |  |  |  |  |  |  |  |
|           |                   |          | Distribut   |             |       | WEIBUI  |                     |  |  |  |  |  |  |  |
|           |                   | Log Lik  | relihood    |             | 11.3  | 2320232 | 72                  |  |  |  |  |  |  |  |
| Algorithm | o convo           | erged.   |             |             |       |         |                     |  |  |  |  |  |  |  |
|           |                   | Ana      | alysis of 1 | Parameter E | stima | ates    |                     |  |  |  |  |  |  |  |
|           |                   |          | Standard    |             |       |         |                     |  |  |  |  |  |  |  |
| Variable  | DF                | Estimate | Error       | Chi-Square  | Pr :  | > ChiSq | Label               |  |  |  |  |  |  |  |
| Intercept | 1                 | 2.96986  | 0.03264     | 8278.8602   |       | <.0001  | Intercept           |  |  |  |  |  |  |  |
| cl        | 1                 | 0.14346  | 0.01652     | 75.4316     |       | <.0001  |                     |  |  |  |  |  |  |  |
| Scale     | 1                 | 0.08437  | 0.01887     |             |       |         | Extreme value scale |  |  |  |  |  |  |  |

**Output 36.3.4.** Final Estimates from the Weibull Distribution

# References

- Allison, P.D. (1995) Survival Analysis Using the SAS System: A Practical Guide, Cary, NC: SAS Institute.
- Cox, D.R. (1972), "Regression Models and Life Tables (with discussion)," *Journal* of the Royal Statistical Society, Series B, 34, 187–220.
- Cox, D.R. and Oakes, D. (1984), *Analysis of Survival Data*, London: Chapman and Hall.
- Elandt-Johnson, R.C. and Johnson, N.L. (1980), *Survival Models and Data Analysis*, New York: John Wiley & Sons, Inc.
- Green, W.H. (1993) *Econometric Analysis, 2nd Edition*, New York: Cambridge University Press.
- Gross, A.J. and Clark, V.A. (1975), *Survival Distributions: Reliability Applications in the Biomedical Sciences*, New York: John Wiley & Sons, Inc.
- Kalbfleisch, J.D. and Prentice, R.L. (1980), *The Statistical Analysis of Failure Time Data*, New York: John Wiley & Sons, Inc.
- Klein, J.P. and Moeschberger, M.L. (1997), Survival Analysis: Techniques for Censored and Truncated Data, Berlin: Springer.
- Lawless, J.E. (1982), *Statistical Models and Methods for Lifetime Data*, New York: John Wiley & Sons, Inc.
- Lee, E.T. (1980), *Statistical Methods for Survival Data Analysis*, Belmont, CA: Lifetime Learning Publications.
- Maddala, G.S. (1983), *Limited-Dependent and Qualitative Variables in Econometrics*, New York: Cambridge University Press.
- Mroz, T.A. (1987) "The Sensitivity of an Empirical Model of Married Women's Work to Economic and Statistical Assumptions," *Econometrica* 55, 765–799.
- Rao, C.R. (1973), *Linear Statistical Inference and Its Applications*, New York: John Wiley & Sons, Inc.
- Tobin, J. (1958), "Estimation of Relationships for Limited Dependent Variables," *Econometrica*, 26, 24–36.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/STAT<sup>®</sup> User's Guide, Version 8, Cary, NC: SAS Institute Inc., 1999.

#### SAS/STAT<sup>®</sup> User's Guide, Version 8

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.

ISBN 1-58025-494-2

All rights reserved. Produced in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

**U.S. Government Restricted Rights Notice.** Use, duplication, or disclosure of the software and related documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, October 1999

 $SAS^{\circledast}$  and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries.<sup>®</sup> indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

The Institute is a private company devoted to the support and further development of its software and related services.