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The Expectation Maximization (EM) algorithm [1, 2] is one of the most widely used algorithms in statistics.
Suppose we are given some observed data X and a model family parametrized by θ, and would like to find
the θ which maximizes p(X |θ), i.e. the maximum likelihood estimator. The basic idea of EM is actually
quite simple: when direct maximization of p(X |θ) is complicated we can augment the data X by introducing
some “hidden variable” Z such that

p(X, Z|θ)
can be computed easily (for example when you observe both X and Z it can be easily maximized with
respect to θ).

General Derivation

Suppose we have a guess of the parameter value θt and want to find θ such that p(X |θ) ≥ p(X |θt). This
can be done by considering the difference between observed-data log-likelihood

∆L = L(θ) − L(θt) = log
p(X |θ)
p(X |θt)

.

Now we introduce the hidden variable Z such that p(X, Z|θ) is easy to compute (usually in a product form
so that log p(X, Z|θ) can be factorized). We have

L(θ) − L(θt) = log

∫

p(X, Z|θ)dZ
p(X |θt)

= log

[
∫

p(Z|θt, X)

p(Z|θt, X)

p(X, Z|θ)
p(X |θt)

dZ

]

≥
∫

[

p(Z|θt, X) log
p(X, Z|θ)

p(Z|θt, X)p(X |θt)

]

dZ

△
= ∆L(θ; θt).

where the last inequality is due to Jensen’s inequality and the fact that log(.) is concave. Note that equiva-
lently we have L(θ) ≥ L(θt) + ∆L(θ; θt), which says that L(θt) + ∆L(θ; θt) is a global lower bound of L(θ)
for any θ. Consequently we can maximize ∆L(θ; θt) wrt θ to obtain θt+1, and as long as ∆L(θt+1; θt) ≥ 0
we have L(θt+1) ≥ L(θt) (and verify that ∆L(θt; θt) = 0).

Now back to the problem of maximizing ∆L(θ; θt) wrt θ:

θt+1 = argmax
θ

∆L(θ; θt)

= argmax
θ

∫
[

p(Z|θt, X) log
p(X, Z|θ)

p(Z|θt, X)p(X |θt)

]

dZ

= argmax
θ

∫

p(Z|θt, X) log p(X, Z|θ)dZ.

Define

Q(θ; θt)
△
=

∫

p(Z|θt, X) log p(X, Z|θ)dZ = EZ|θt,X [log p(X, Z|θ)].

Finally we derived the EM algorithm:
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• E-step: compute Q(θ; θt), which is the expectation of complete-data log-likelihood log p(X, Z|θt)
and the expectation is wrt p(Z|θt, X).

• M-step: maximize Q(θ; θt) wrt θ to obtain θt+1.

Mixture of Normal Distributions

We now apply EM to fit a mixture of two normal distributions. Suppose we observe x1, . . . , xn from a
mixture of normal distributions

p(x) = λN(µ1, σ
2
1) + (1 − λ)N(µ2, σ

2
2).

So in our case the observed data is {x1, . . . , xn} and the θ = {λ, µ1, σ
2
1 , µ2, σ

2
2}. We introduce hidden variables

Z1, . . . , Zn where Zi = 0 if xi comes from the first mixture component and 1 otherwise. The complete-data
log-likelihood can be written down easily as (due to our introduction of hidden variables):

log p(xi, zi|θ) = log

{

[

λ
1√

2πσ1

exp

(

− (xi − µ1)
2

2σ2
1

)]zi
[

(1 − λ)
1√

2πσ2

exp

(

− (xi − µ2)
2

2σ2
2

)]1−zi

}

= zi log

[

λ
1√

2πσ1

exp

(

− (xi − µ1)
2

2σ2
1

)]

+ (1 − zi) log

[

(1 − λ)
1√

2πσ2

exp

(

− (xi − µ2)
2

2σ2
2

)]

and Q(θ; θt) can be written as (for simplicity we discard constants and group parameters together):

Q(θ; θt) = E

[

n
∑

i=1

(zi log λ + (1 − zi) log(1 − λ))

]

+ E

[

n
∑

i=1

(−zi log σ1 − (1 − zi) log σ2)

]

+ E

[

n
∑

i=1

(

−zi

(xi − µ1)
2

2σ2
1

− (1 − zi)
(xi − µ2)

2

2σ2
2

)

]

=

n
∑

i=1

(E[zi] log λ − (1 − E[zi]) log(1 − λ)) +

n
∑

i=1

(−E[zi] log σ1 − (1 − E[zi]) log σ2)

+

n
∑

i=1

(

−E[zi]
(xi − µ1)

2

2σ2
1

− (1 − E[zi])
(xi − µ2)

2

2σ2
2

)

.

Define m1
i = E[zi] and m2

i = 1 − E[zi] and we first work out the M-step assuming that we already know
m1

i , m
2
i ’s (which depend on the value of θt). By maximizing Q(θ; θt) wrt θ we have

λt+1 =
1

n

n
∑

i=1

m1
i

µt+1
j =

∑n
i=1 m

j
ixi

∑n

i=1 m
j
i

, (j = 1, 2)

σt+1
j =

∑n
i=1 m

j
i (xi − µt+1

j )2

∑n
i=1 m

j
i

, (j = 1, 2).

Note that the M-step makes perfect sense if we split each xi into two particles, the first comes from mixture
component one with weight m1

i , etc. The quantity m1
i = E[zi] which is needed in the E-step can be computed

as

E[zi] = 1 · p(zi = 1|θt, x1, . . . , xn) + 0 · p(zi = 0|θt, x1, . . . , xn)

=
p(xi, zi = 1|θt)

p(xi, zi = 0|θt) + p(xi, zi = 1|θt)

=
λtN(xi|µt

1, (σ
t
1)

2)

λtN(xi|µt
1, (σ

t
1)

2) + (1 − λt)N(xi|µt
2, (σ

t
2)

2)
.

To extend the idea to a mixture of m distributions we can introduce hidden variables zi,j with i = 1, . . . , n

and j = 1, . . . , m. Define zij = 1 if xi is generated from the j-th mixture component and 0 otherwise. The
rest follows straightforwardly.
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EM in the Exponential Family

Let X be the observed data and Z be the hidden variable [2]. Suppose the augmented data Y = (X, Z)
are distributed as

p(Y |θ) =
b(Y )

a(θ)
exp(θT s(Y )),

i.e. the regular exponential family, where θ ∈ R
d is the parameter vector and s(Y ) ∈ R

d is the vector of
sufficient statistics.

The Q(θ; θt) can be written as

Q(θ; θt) =

∫

p(Z|θt, X) log p(X, Z|θ)dZ

=

∫

p(Z|θt, X) log b(Y )dZ + θT

∫

p(Z|θt, X)s(Y )dZ − log a(θ).

Notice that the first term does not depend on θ and thus can be thrown away. So the E-step reduces to just
compute the expected sufficient statistics

EZ|θt,X [S(Y )]
△
= s.

In the M-step we maximize θT
s − log a(θ), where a(θ) =

∫

b(Y ) exp(θT s(Y ))dY . Compute the derivative
wrt θ and set it to zero we have

EY |θ[S(Y )] =

∫

p(X, Z|θ)S(Y )dY = s.

In other words, the M-step is reduced to find the root θt+1 of the above equation.

EM Generalizations

There are many ways to generalize the standard EM algorithm, and here we just mention a few.

Generalized M-step.

Sometimes it may be difficult or expensive to find θt+1 = arg maxQ(θ; θt). Since all we need is to find
θt+1 such that Q(θ; θt) ≥ Q(θt, θt) = 0, we may use an easy or cheap method to just maximize Q(θ; θt)
approximately. Note that this change usually results in more iterations to converge and may not slow down
your algorithm especially when E-step is expensive to compute.

Generalized E-step.

In practice the E-step is often more complicated than the M-step, and sometimes the exact E-step is difficult
to obtain. Recall that in the derivation of EM we have

L(θ)−L(θt) = log

∫

p(X, Z|θ)dZ
p(X |θt)

= log

[
∫

p(Z|θt, X)

p(Z|θt, X)

p(X, Z|θ)
p(X |θt)

dZ

]

≥
∫

[

p(Z|θt, X) log
p(X, Z|θ)

p(Z|θt, X)p(X |θt)

]

dZ.

In fact in order for the Jensen’s inequality to hold we can replace p(Z|θt, X) with any valid distribution
q(Z|γ) in the above derivation. Thus we have

L(θ) − L(θt) = log

[
∫

q(Z|γ)

q(Z|γ)

p(X, Z|θ)
p(X |θt)

dZ

]

≥
∫

[

q(Z|γ) log
p(X, Z|θ)

q(Z|γ)p(X |θt)

]

dZ
△
= ∆Lq(.|γ)(θ, θ

t).

Note also that when q(Z|γ) is the true posterior p(Z|θ, X) the above bound is exact. So the generalized EM
works as follows:

• E-step: compute the expectation of complete-data log-likelihood log p(X, Z|θ) where the expectation
is wrt q(Z|γ). You want to use a distribution q(Z|γ) which is a good approximation1 to p(Z|θt, X).

• M-step: maximize Qq(.|γ)(θ; θ
t) = Eq(Z|γ)[log p(X, Z|θ)] to obtain θt+1.

1This can be done, for example, by choosing its parameter γ in some parametric family q(.|γ) ∈ F .
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Monte Carlo E-step.

Instead of computing Q(θ; θt) = EZ|θt,X [log p(X, Z|θ)], one may apply the method of Monte Carlo [2] to
approximate the Q function. In particular, the Monte Carlo E-step can be computed as:

(1) Draw z1, . . . , zm
iid∼ p(Z|θt, X).

(2) Let Q̂(θ; θt) = 1
m

∑m

j=1 log p(X, zj|θ).
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