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The Expectation Mazimization (EM) algorithm [1, 2] is one of the most widely used algorithms in statistics.
Suppose we are given some observed data X and a model family parametrized by 6, and would like to find
the 6 which maximizes p(X|0), i.e. the mazimum likelihood estimator. The basic idea of EM is actually
quite simple: when direct maximization of p(X|6) is complicated we can augment the data X by introducing
some “hidden variable” Z such that

p(X, Z10)

can be computed easily (for example when you observe both X and Z it can be easily maximized with
respect to 6).

GENERAL DERIVATION

Suppose we have a guess of the parameter value ' and want to find 6 such that p(X|0) > p(X|6"). This
can be done by considering the difference between observed-data log-likelihood
p(X16)

AL = L(§) — L(#") = log DXT0)

Now we introduce the hidden variable Z such that p(X, Z|0) is easy to compute (usually in a product form
so that log p(X, Z|0) can be factorized). We have

[p(X,2|6)dz
p(X16%)

p(Z|9t, X) p(X, Z|9)
to [/ (216, X) p(X[6) dz]
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where the last inequality is due to Jensen’s inequality and the fact that log(.) is concave. Note that equiva-
lently we have L(0) > L(0%) + AL(0;0"), which says that L(0%) + AL(0;0") is a global lower bound of L(#)
for any 6. Consequently we can maximize AL(6;6*) wrt 6 to obtain #*T!, and as long as AL(#!71;6) > 0
we have L(0'T1) > L(#") (and verify that AL(#%;0') = 0).

Now back to the problem of maximizing AL(6;6) wrt 6:

6! = argmax AL(6;6")
0

p(X, Z10)
Z10%, X)p(X|0%)

= argmax/{p(ZW,X)log
0 p(
= argmax/p(ZW,X)logp(X,Z|9)dZ.
0

Define
A
Q0;0") = /p(Z|9t,X)10gp(X,Zl9)dZ = Ezo x[logp(X, Z|0))].

Finally we derived the EM algorithm:
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and the expectation is wrt p(Z|6¢, X).
o M-step: maximize Q(0;0") wrt 6 to obtain §'*1.

e FE-step: compute Q(6;6%), which is the expectation of complete-data log-likelihood logp(X, Z|0%)

MIXTURE OF NORMAL DISTRIBUTIONS

We now apply EM to fit a mixture of two normal distributions. Suppose we observe x1,...,x, from a
mixture of normal distributions

p(@) = AN (p1,0%) + (1 = )N (2, 03).-
So in our case the observed data is {71, ..., 7, } and the § = {\, 1, 0%, pa, 03 }. We introduce hidden variables

Z1, ..., Zy, where Z; = 0 if x; comes from the first mixture component and 1 otherwise. The complete-data
log-likelihood can be written down easily as (due to our introduction of hidden variables):

log{ [)\\/%01 exp (_%)TI’ [(1 3 \/%02 . (_%ﬂ 121}

and Q(6;6") can be written as (for simplicity we discard constants and group parameters together):

log p(x4, 2;|6)

QO:0") = E i (zilog A+ (1 — z)log(1 — E i (—zilogoy — (1 — zi)logag)]
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Deﬁne m} = E[z;] and m? = 1 — E[z] and we first work out the M-step assuming that we already know
mi,m?’s (Whlch depend on the value of §). By maximizing Q(0;0") wrt 6 we have
P 1 . m;
n& "
t+1 o Z’?:l mjxl i=1.2
pioo= g =12)
Zz 1%
41 _ Dt m] (@i “EH)

! D™y
Note that the M-step makes perfect sense if we split each x; into two particles, the first comes from mixture
component one with weight m}, etc. The quantity m; = E[z;] which is needed in the E-step can be computed
as

Elz] = 1-p(z=1|0"21,...,2,) +0-p(z =0|0",21,...,2,)
p(x;, 2 = 1|6%)
p(xi, 2 = 016") + p(w;, 2 = 1[67)
AN (@il (01)?)

AN (il g, (01)%) + (1= NN (@il ps, (05)?)

To extend the idea to a mixture of m distributions we can introduce hidden variables z; ; with i =1,...,n

and j =1,...,m. Define z;; = 1 if x; is generated from the j-th mixture component and 0 otherwise. The
rest follows straightforwardly.
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EM IN THE EXPONENTIAL FAMILY

Let X be the observed data and Z be the hidden variable [2]. Suppose the augmented data ¥ = (X, Z)
are distributed as

p19) = 2o expl6s(v).

i.e. the regular erponential family, where § € R? is the parameter vector and s(Y) € R? is the vector of
sufficient statistics.

The Q(6;6") can be written as
Qest') = [ p(Z16',X)logp(X. ZI6)dZ
= /p(Z|9t,X)1ogb(Y)dZ+0T/p(Z|9t,X)s(Y)dZ —loga(f).

Notice that the first term does not depend on 6 and thus can be thrown away. So the E-step reduces to just
compute the expected sufficient statistics

1>

Ezjge,x[S(Y)] S.

In the M-step we maximize 67's — loga(f), where a(f) = [b(Y)exp(67s(Y))dY. Compute the derivative
wrt 0 and set it to zero we have
BvulS(Y)] = [ (X ZI9)S(¥)dY s

In other words, the M-step is reduced to find the root #**! of the above equation.

EM GENERALIZATIONS

There are many ways to generalize the standard EM algorithm, and here we just mention a few.

Generalized M-step.

Sometimes it may be difficult or expensive to find ! = argmaxQ(6;6"). Since all we need is to find
9!+ such that Q(0;0%) > Q(#',0') = 0, we may use an easy or cheap method to just maximize Q(6;6")
approximately. Note that this change usually results in more iterations to converge and may not slow down
your algorithm especially when E-step is expensive to compute.

Generalized E-step.

In practice the E-step is often more complicated than the M-step, and sometimes the exact E-step is difficult
to obtain. Recall that in the derivation of EM we have

['p(X, 2|0)dZ { / p(Z]0", X) p(X, Z|0) ] / [ ' p(X, Z|9)
S, 21782 ), az| > [ |p(z]6t, X)log

P(X167) P(ZF.X) p(X]) 1020108 Ser X
In fact in order for the Jensen’s inequality to hold we can replace p(Z|0%, X) with any valid distribution

q(Z]v) in the above derivation. Thus we have

t ’ 0 ’ 0 t
w00 =0 os | | Sy 7] 2 [ [ s e 2 & Ao @.0)

Note also that when ¢(Z|y) is the true posterior p(Z]0, X') the above bound is exact. So the generalized EM
works as follows:

L(§)—L(#") = log

e E-step: compute the expectation of complete-data log-likelihood log p(X, Z|6) where the expectation
is wrt ¢(Z|y). You want to use a distribution ¢(Z|y) which is a good approximation! to p(Z|0, X).
e M-step: maximize Qq( |,)(0;0") = Ey(z) [log p(X, Z|0)] to obtain .

IThis can be done, for example, by choosing its parameter 7 in some parametric family g(.|y) € F.

dz.
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Monte Carlo E-step.

Instead of computing Q(6;60") = Ezg x[logp(X, Z|0)], one may apply the method of Monte Carlo [2] to
approximate the @ function. In particular, the Monte Carlo E-step can be computed as:
(1) Draw z1,...,2m Ky p(Z16t, X).

(2) Let Q(6;0") = L 3> log p(X, 26).
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