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Overview of the EM Algorithm

1. Maximum likelihood estimation is ubiquitous in statistics

2. EM is a special case of the MM algorithm that relies on the
notion of missing information.

3. The surrogate function is created by calculating a certain
conditional expectation. Sometimes an MM and an EM al-
gorithm coincide for the same problem; sometimes not.

4. Convexity enters through Jensen’s inequality.

5. Many examples were known before the general principle was
enunciated.
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Nature of Missing Information

1. Missing information can take the form of missing data.

2. Missing information can also be more abstract. Even with
perfect data collection, there can be missing information.

3. For instance, in PET scanning, current machines cannot de-
termine where along a projection line a decay event has taken
place. If we knew the pixel of origin of each decay event, then
estimating the concentration of a radio-labeled compound
would be straightforward.

4. The complete data should be conceptualized to make maxi-
mum likelihood estimation trivial.
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Ingredients of the EM Algorithm

1. The observed data y with likelihood f(y | θ). Here θ is a
parameter vector.

2. The complete data x with likelihood g(x | θ).

3. The conditional expectation

Q(θ | θn) = E[ln g(x | θ) | y, θn]

furnishes the minorizing function up to a constant. Here θn

is the value of θ at iteration n of the EM algorithm.

4. Calculation of Q(θ | θn) constitutes the E step; maximization
of Q(θ | θn) with respect to θ constitutes the M step.
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Minorization Property of the EM Algorithm

1. The proof depends on Jensen’s inequality E[h(Z)] ≥ h[E(Z)]
for a random variable Z and convex function h(z).

2. If p(z) and q(z) are probability densities with respect to a
measure µ, then the convexity of − ln z implies the informa-
tion inequality

Ep[ln p] − Ep[ln q] = Ep[− ln
q

p
] ≥ − lnEp(

q

p
) = − ln

∫
q

p
pdµ = 0,

with equality when p = q.

3. In the E step minorization, we apply the information inequal-
ity to the conditional densities p(x) = f(x | θn)/g(y | θn) and
q(x) = f(x | θ)/g(y | θ) of the complete data x given the
observed data y.
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Minorization Property II

1. The information inequality Ep[ln p] ≥ Ep[ln q] now yields

Q(θ | θn) − ln g(y | θ) = E [ ln
f(x | θ)

g(y | θ)
| y, θn]

≤ E [ ln
f(x | θn)

g(y | θn)
| y, θn] = Q(θn | θn) − ln g(y | θn),

with equality when θ = θn.

2. Thus, Q(θ | θn)−Q(θn | θn)+ ln g(y | θn) minorizes ln g(y | θ).

3. In the M step it suffices to maximize Q(θ | θn) since the other

two terms of the minorizing function do not depend on θ.
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Example 1: Twin Data

1. You are given a sample of m male twin pairs, f female twin

pairs, and o opposite sex twin pairs. Estimate the probability

p that a twin pair is identical and the probability q that a

child is male.

2. Here y = (m, f, o) is the observed data and θ = (p, q) is the

parameter vector. If we knew exactly which pairs of same-sex

twins were identical, then it would be easy to estimate p and

q. Thus, we postulate complete data x = (m1, m2, f1, f2, o),

with m1 representing the number of male identical twin pairs

and m2 the number of male non-identical twin pairs. f1 and

f2 are defined similarly.
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Example 1: Complete Data Loglikelihood

1. The multinomial complete data likelihood is

g(x | θ) =
( m + f + o

m1, m2, f1, f2, o

)
(pq)m1[(1 − p)q2]m2[p(1 − q)]f1

×[(1 − p)(1 − q)2]f2[(1 − p)2q(1 − q)]o

since identical twins involve one choice of sex and non-identical

twins two choices of sex.

2. The complete data loglikelihood is

ln g(x | θ) = (m1 + f1) ln p + (m2 + f2 + o) ln(1 − p)

+(m1 + 2m2 + o) ln q

+(f1 + 2f2 + o) ln(1 − q) + constant.
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Example 1: E Step

To carry out the E step we calculate

mn
1 = E(m1 | y, θn) = m

pnqn

pnqn + (1 − pn)(qn)2

mn
2 = E(m2 | y, θn) = m

(1 − pn)(qn)2

pnqn + (1 − pn)(qn)2

fn
1 = E(f1 | y, θn) = f

pn(1 − qn)

pn(1 − qn) + (1 − pn)(1 − qn)2

fn
2 = E(f2 | y, θn) = f

(1 − pn)(1 − qn)2

pn(1 − qn) + (1 − pn)(1 − qn)2

by applying Bayes’ rule.
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Example 1: M Step

1. The surrogate function is

Q(θ | θn) = (mn
1 + fn

1 ) ln p + (mn
2 + fn

2 + o) ln(1 − p)

+(mn
1 + 2mn

2 + o) ln q

+(fn
1 + 2fn

2 + o) ln(1 − q) + constant.

2. Straightforward calculus shows the maximum occurs for

pn+1 =
mn

1 + fn
1

m + f + o

qn+1 =
mm

1 + 2mn
2 + o

m + f + o + mn
2 + fn

2
.

Note that Q(θ | θn) is separable in the parameters p and q

and that m1 + m2 + f1 + f2 + o = m + f + o.
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Example 1: Hidden Binomial Updates

1. Both the number of identical twins and the number of choices

of the male sex involve hidden binomial trials.

2. The update in such circumstances take the form

rn+1 =
E(#successes | y, θn)

E(#trials | y, θn)

for r = p or r = q. In the first case the number of trials

is fixed at m + f + o, and in the second case the number

of trials is random because the number of choices of sex

depends on the number of identical twins versus the number

of non-identical twins.
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Example 2: Light Bulb Lifetimes

1. The random lifetime of a light bulb is postulated to be ex-

ponential with unknown mean 1/θ.

2. The lifetimes y1, . . . , yr of r independent bulbs are observed.

A further s independent bulbs are observed at time t > 0.

Bulb i + r is registered as still burning, zi+r = 1, or expired,

zi+r = 0. Thus, the lifetimes of the second set of bulbs are

both left and right censored.

3. In this situation it is natural to view the complete data as the

observed lifetimes y1, . . . , yr supplement by the unobserved

lifetimes xr+1, . . . , xr+s.
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Example 2: Complete Data Loglikelihood

The complete data loglikelihood is

g(x | θn) =
r∑

i=1

(ln θ − θyi) +
r+s∑

i=r+1

(ln θ − θxi)

= r ln θ − rθȳ +
r+s∑

i=r+1

(ln θ − θxi)

for exponentially distributed lifetimes, where ȳ is the average

value of y1, . . . , yr.
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Example 2: E Step

1. Because the survival time of a light bulb lacks memory, right
censored data gives E(xr+i | zr+i = 1, θn) = t + 1/θn.

2. For left censored data, integration by parts and the funda-
mental theorem of calculus yield

E(xr+i | zr+i = 0, θn) =

∫ t
0 xθne−θnxdx
∫ t
0 θne−θnxdx

=
1

θn
−

te−θnt

1 − e−θnt
.

3. Weighted by their respective probabilities and summed, these
two conditional expectations give back the unconditional mean
1/θn of xr+i.
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Example 2: M Step

1. If we let µn
i = E(xr+i | zr+i, θ

n), then the surrogate function

is

Q(θ | θn) = (r + s) ln θ − θ[rȳ +
r+s∑

i=r+1

µn
i ].

2. It is now easy to differentiate and solve for the EM update

θn+1 =
r + s

rȳ +
∑r+s

i=r+1 µn
i

.

3. In other words, we fill in unknown times by their conditional

expectations and then identity 1/θn+1 with the average of

the actual and imputed lifetimes.
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Example 3: Binomial-Poisson Mixture

Thisted considers historic data on widows and their dependent

children from a Swedish pension fund. If yk denotes the number

of widows with k children, then the data values are y0 = 3062,

y1 = 587, y2 = 284, y3 = 103, y4 = 33, and y5 = 4, and

y6 = 2. The fact that most widows have no dependent children

suggests that a simple Poisson model would give a poor fit.

A better model is a mixture of a population of widows with

no children, population A, and a population of widows having a

Poisson number of children, population B. Suppose a widow falls

into population A with probability p and into population B with

probability 1 − p. Let µ be the mean of the Poisson distribution

characterizing population B.
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Example 3: Loglikelihood for the Binomial-Poisson

Mixture

1. The parameter vector is θ = (p, µ).

2. Omitting the obvious multinomial coefficient, the loglikeli-

hood for the observed data is

ln g(y | θ) = y0 ln[p + (1 − p)e−µ]

+
∑

k≥1

yk[ ln(1 − p) + k lnµ − µ − ln k!]

3. There is no closed-form maximum.
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Example 3: The Complete Data

1. To generate the complete data, we split the y0 widows into
xA widows from population A and xB widows from population
B.

2. The loglikelihood for the complete data is

ln f(x | θ) = xA ln p + xB[ln(1 − p) − µ]

+
∑

k≥1

yk[ ln(1 − p) + k lnµ − µ − ln k!]

3. In the E step, we calculate

xn
A = E(xA | y0, θn) = y0

pn

pn + (1 − pn)e−µn

xn
B = E(xB | y0, θn) = y0 − E(xA | y0, θn).
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Example 3: The M Step

1. The surrogate function is

Q(θ | θn) = xn
A ln p + xn

B[ln(1 − p) − µ]

+
∑

k≥1

yk[ ln(1 − p) + k lnµ − µ − ln k!]

2. The maximum occurs for

pn+1 =
xn

A

y0 +
∑

k≥1 yk

µn+1 =

∑
k≥1 kyk

xn
B +

∑
k≥1 yk

.
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Example 3: The Algorithm in Practice

1. The updates are hidden binomial and hidden Poisson up-

dates.

2. The first few iterations are:

p0 = 0.75000 µ0 = 0.40000

p1 = 0.61418 µ1 = 1.03548

p2 = 0.61438 µ2 = 1.03601

p3 = 0.61453 µ3 = 1.03643

p4 = 0.61465 µ4 = 1.03675

p4 = 0.61474 µ5 = 1.03670

3. Convergence is fast at first and then slows.
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Example 4: Transmission Tomography

1. Recall that the observed data consist of the photon counts

yi for the various projection lines i. Along projection i the

number of photons that begin the journey from source to

detector follows a Poisson distribution with mean di. Pixel j is

assigned attenuation coefficient θj, and projection i intersects

pixel j over a distance of lij.

2. With this notation the loglikelihood of the observed data is

ln g(y | θ) =
∑

i

[ − die
−

∑
j lijθj − yi

∑

j

lijθj + yi ln di − ln yi!].
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Example 4: Complete Data

1. The complete data consist of the number of photons that

enter pixel j along projection i for all pairs i and j.

2. Since transmission acts independently along each projection,

we focus on a single projection and drop the projection sub-

script. Let y = xm be the number of photons detected and

xj the number of photons entering pixel j. Here we assume

m − 1 pixels along the projection.

3. Each of these random variables is Poisson; x1 is Poisson by

virtue of how X-rays are generated, and xj is Poisson because

random thinning turns one Poisson process into another.
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Example 4: Complete Data Likelihood

1. For the sake of simplicity, we omit a smoothing prior.

2. Given xj, the number of photons xj+1 passing through pixel

j is binomial with mean xj and success probability e−ljθj.

3. The complete data loglikelihood is therefore

f(x | θ) = −d + x1 ln d − ln x1! +
m−1∑

j=1
[ ln

( xj

xj+1

)

+xj+1 ln e−ljθj + (xj+1 − xj) ln(1 − e−ljθj)].
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Example 4: E Step

1. To complete the E step, it suffices to calculate E(xj | xm, θn)
for each j.

2. The unconditional mean µj = E(xj) = de−
∑j−1

k=1 lkθk.

3. On the next slide we show that E(xj | xm, θn) = µj−µm+xm.

4. This will show in the original notation that

Q(θ | θn) =
∑

i

∑

j

[ − rn
ijlijθj + (sn

ij − rn
ij) ln(1 − e−lijθj)]

for computable constants rn
ij and sn

ij depending on θn and the
yi.

23



Example 4: Calculation of E(xj | xm, θn)

Suppose U and V are Poisson counts. If V is generated from U

by randomly thinning each U point with probability 1 − p, then

U − V is Poisson and independent of V . If U has mean µ, then

Pr(U − V = j | V = k) =

µj+k

(j+k)!e
−µ

(
j+k

k

)
pk(1 − p)j

(pµ)k

(k)! e−pµ

=
[(1 − p)µ]j

j!
e−(1−p)µ.

Thus, E(U −V | V ) = (1−p)µ and E(U | V ) = V +(1−p)µ. Now

apply this to V = xm and U = xj.
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Example 4: M Step

1. The surrogate function

Q(θ | θn) =
∑

i

∑

j

[ − rn
ijlijθj + (sn

ij − rn
ij) ln(1 − e−lijθj)]

separates the parameters.

2. To find the maximum of the part containing θj, one must
solve a transcendental equation numerically.

3. This is not hard, but the EM algorithm is inferior to the
MM algorithm posed earlier because of the work involved in
computing the constants rn

ij and sn
ij. In essence, one must

exponentiate all of the partial line integrals running from the
source to each intermediate pixel along each projection.
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Concluding Comments on the EM Algorithm

1. It always involves missing information. Recognizing an ap-
propriate complete data framework is often fairly natural.

2. The E step can involve tricky conditional expectations. Never
guess at the form of the surrogate. Work through the recipe.

3. Convergence can be very slow on some problems and is inti-
mately related to the amount of missing information.

4. Intermediate quantities in the algorithm often have useful
statistical interpretations.

5. Every EM algorithm is an MM algorithm, so all convergence
results carry over.

26



References

1. Dempster AP, Laird NM, Rubin DB (1977) Maximum likeli-

hood from incomplete data via the EM algorithm (with dis-

cussion). J Roy Stat Soc B 39:1–38

2. Lange K (1999) Numerical Analysis for Statisticians. Springer-

Verlag, New York

3. Little RJA, Rubin DB (1987) Statistical Analysis with Miss-

ing Data. Wiley, New York

4. McLachlan GJ, Krishnan T (1996) The EM Algorithm and

Extensions.

27


