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Overview of the EM Algorithm

. Maximum likelihood estimation is ubiquitous in statistics

. EM is a special case of the MM algorithm that relies on the
notion of missing information.

. T he surrogate function is created by calculating a certain
conditional expectation. Sometimes an MM and an EM al-
gorithm coincide for the same problem; sometimes not.

. Convexity enters through Jensen’s inequality.

. Many examples were known before the general principle was
enunciated.



Nature of Missing Information

. Missing information can take the form of missing data.

. Missing information can also be more abstract. Even with
perfect data collection, there can be missing information.

. For instance, in PET scanning, current machines cannot de-
termine where along a projection line a decay event has taken
place. If we knew the pixel of origin of each decay event, then
estimating the concentration of a radio-labeled compound
would be straightforward.

. TThe complete data should be conceptualized to make maxi-
mum likelihood estimation trivial.



Ingredients of the EM Algorithm

. The observed data y with likelihood f(y | 8). Here 0 is a
parameter vector.

. The complete data x with likelihood g(x | ).

. T he conditional expectation

QO 10") = Eling(x|0)|y,0"]
furnishes the minorizing function up to a constant. Here 0™
is the value of @ at iteration n of the EM algorithm.

. Calculation of Q(0 | ™) constitutes the E step; maximization
of Q0 | 6™) with respect to 6 constitutes the M step.



Minorization Property of the EM Algorithm

1. The proof depends on Jensen’s inequality E[h(Z)] > h[E(Z)]
for a random variable Z and convex function h(z).

2. If p(z) and ¢(z) are probability densities with respect to a
measure u, then the convexity of —Inz implies the informa-
tion inequality

Eplinp] — Epling] = Epl—In 4] > —InEx(%) = - In/gpd,u — 0,
p p p

with equality when p = gq.

3. In the E step minorization, we apply the information inequal-
ity to the conditional densities p(x) = f(x | 6™)/g(y | ™) and

g(x) = f(x | 0)/g(y | 8) of the complete data = given the
observed data y.



Minorization Property II

. The information inequality Ep[lnp] > Ep[Ing] now yields

Q1 6™ —Ing(y | 8) = E[InLZ10  gn
o(y | 0)
<epn L0 g = geen 107y —ing(y | o),
g(y | 6™)

with equality when 6 = 6".

. Thus, Q(0|0™) —Q™ | 0™) +Ing(y | ™) minorizes Ing(y | 9).

. In the M step it suffices to maximize Q(0 | 6™) since the other
two terms of the minorizing function do not depend on 6.



Example 1: Twin Data

1. You are given a sample of m male twin pairs, f female twin
pairs, and o opposite sex twin pairs. Estimate the probability
p that a twin pair is identical and the probability g that a
child is male.

2. Here y = (m, f,o0) is the observed data and 6 = (p,q) is the
parameter vector. If we knew exactly which pairs of same-sex
twins were identical, then it would be easy to estimate p and
g. Thus, we postulate complete data z = (m1,mo, f1, fo,0),
with mq representing the number of male identical twin pairs
and mo the number of male non-identical twin pairs. f; and
fo are defined similarly.



Example 1: Complete Data Loglikelihood

1. The multinomial complete data likelihood is

<ml mszr ff1+ ;2 0) ()™ [(1 — p)g*1™2[p(1 — )]/

x[(1 —p)(1 — 9)%12[(1 — p)2g(1 — )]°

since identical twins involve one choice of sex and non-identical
twins two choices of sex.

g(z |0) =

2. The complete data loglikelihood is

Ing(z |0) = (m1+ f1)Inp+ (mo+ fo+0)In(1—p)
-|—(m1—|—2m2—|—0)|nq
+(f1 4+ 2f2 4+ 0) In(1 — q) + constant.



Example 1: E Step

To carry out the E step we calculate

p"q"

M= By O = (= @)
(1 —p™)(g")?

n:E ,e’n —
mz = Elma [y 0 =m T~ ) (1)
p"(1 —q")

n—=—E ") =
fl (fl |ya ) fpn(l_qn)+(1_pn)(]_2_qn)2
B=E(f ]y 0" =f (L =p"){1 ~a")

p*(1—q™) 4+ (1 —p™)(1 —q")?
by applying Bayes' rule.



Example 1: M Step

. T he surrogate function is

QO|0") = (mT7+ f)Inp+ (m5+ f5 +0)In(1 —p)
+(mT +2m5 +0)Ing
+(fF 4 2f8 + 0) In(1 — ¢) + constant.

. Straightforward calculus shows the maximum occurs for

pn—l—l — m?_l_f{l
m—+ f+o

qn—l—l — mT_I_ng_I_O
m+f+o+mi+ 3

Note that Q@ | 6™) is separable in the parameters p and ¢
and that mqy +mo+ f1 +fo+o=m-+ f+o.



Example 1: Hidden Binomial Updates

1. Both the number of identical twins and the number of choices
of the male sex involve hidden binomial trials.

2. The update in such circumstances take the form

bl E(#successes | y,0™)
E(#trials | y,0™)
for r = p or r = q. In the first case the number of trials
is fixed at m 4+ f + o, and in the second case the number
of trials is random because the number of choices of sex
depends on the number of identical twins versus the number
of non-identical twins.
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Example 2: Light Bulb Lifetimes

1. The random lifetime of a light bulb is postulated to be ex-
ponential with unknown mean 1/6.

2. The lifetimes y1,...,yr Of r independent bulbs are observed.
A further s independent bulbs are observed at time t > O.
Bulb ¢« 4 r is registered as still burning, z;,,, =1, or expired,
zi4r = 0. Thus, the lifetimes of the second set of bulbs are
both left and right censored.

3. In this situation it is natural to view the complete data as the
observed lifetimes y1,...,yr supplement by the unobserved
lifetimes x4 1,...,%,4s.
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Example 2: Complete Data Loglikelihood

The complete data loglikelihood is

r=+s
gz |0™) = Z(In@ Oy;) + Z (InO — Ox;)
1=r—+1
r—+s
= rind—réy+ > (In6—6x;)
1=r+1

for exponentially distributed lifetimes, where y is the average
value of y1,...,yr.
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Example 2: E Step

1. Because the survival time of a light bulb lacks memory, right
censored data gives E(x,4; | zp4; = 1,0") =t 4+ 1/6™.

2. For left censored data, integration by parts and the funda-
mental theorem of calculus yield

fé 20" Ty
fé One—0"x

1 te— 0"
on 1 — e 0"t

E(wr—l—i | “r4i — 0,60")

3. Weighted by their respective probabilities and summed, these
two conditional expectations give back the unconditional mean
1/9?1 of $7,_|_Z'.
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Example 2: M Step

. If we let p = E(xp44 | 2.44,0™), then the surrogate function
S

r+s
QUI6" = (r+9)IN6—0rj+ > wll.
i=r+1

. It is now easy to differentiate and solve for the EM update

g+l r—+ s
~ r—+s n’
rY + 2=t 1 B

. In other words, we fill in unknown times by their conditional
expectations and then identity 1/9”"‘“L with the average of
the actual and imputed lifetimes.
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Example 3: Binomial-Poisson Mixture

T histed considers historic data on widows and their dependent
children from a Swedish pension fund. If y, denotes the number
of widows with k children, then the data values are yg = 3062,
y1 = 587, yo = 284, yz3 = 103, y4 = 33, and ys5 = 4, and
ye = 2. T he fact that most widows have no dependent children
suggests that a simple Poisson model would give a poor fit.
A better model is a mixture of a population of widows with
no children, population A, and a population of widows having a
Poisson number of children, population B. Suppose a widow falls
into population A with probability p and into population B with
probability 1 —p. Let u be the mean of the Poisson distribution
characterizing population B.

15



Example 3: Loglikelihood for the Binomial-Poisson
Mixture

1. The parameter vector is 6§ = (p, u).

2. Omitting the obvious multinomial coefficient, the loglikeli-
hood for the observed data is

Ing(y |9) = yolnlp+ (1 —p)e#]

+ > y[n(l—p)+kinp—p—Ink!]
k>1

3. There is no closed-form maximum.
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Example 3: The Complete Data

. To generate the complete data, we split the yg widows into
x 4 widows from population A and xg widows from population
B.

. T he loglikelihood for the complete data is

Inf(a;|9) — xAInp_l_xB[ln(l—p)—,u]
+ > ylin(Q—p) +kInp—p—Ink!]
k>1

. In the E step, we calculate

n

p
p"+ (1 —p)e M
rp =E(zp|y0,0") =yo— E(x4|y0,0").

'y = E(za | ¥0,0") = yo
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Example 3: The M Step

1. The surrogate function is

QMO |0") = ziinp+ x2B[In(1 —p) — ]
T Z yk[ln(l —p)+Eklnp—p— In k!]
k>1

2. The maximum occurs for

pn—l—l — w%
Yo T 2_k>1 Yk
il = > k>1 kY

'+ > k>1 Yk
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1. The updates are hidden binomial and hidden Poisson up-

dates.

2. The first few iterations are:

3. Convergence is fast at first and then slows.

p° = 0.75000
pl =0.61418
p? = 0.61438
p> = 0.61453
p* = 0.61465
p* = 0.61474

Example 3: The Algorithm in Practice

19 = 0.40000
!l =1.03548
1? = 1.03601
13 = 1.03643
u*=1.03675
1° = 1.03670
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Example 4: Transmission Tomography

1. Recall that the observed data consist of the photon counts
y; for the various projection lines . Along projection 7 the
number of photons that begin the journey from source to
detector follows a Poisson distribution with mean d;. Pixel 5 is
assigned attenuation coefficient Hj, and projection ¢ intersects
pixel j over a distance of [;;.

2. With this notation the loglikelihood of the observed data is

Ing(y0) = > [—de 2 50—y > 105 + yiIndy — Iny;t].
i J
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Example 4: Complete Data

1. The complete data consist of the number of photons that
enter pixel 5 along projection ¢ for all pairs z and j.

2. Since transmission acts independently along each projection,
we focus on a single projection and drop the projection sub-
script. Let y = xy, be the number of photons detected and
T the number of photons entering pixel 5. Here we assume
m — 1 pixels along the projection.

3. Each of these random variables is Poisson; xq is Poisson by
virtue of how X-rays are generated, and T iIs Poisson because
random thinning turns one Poisson process into another.
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Example 4: Complete Data Likelihood
. For the sake of simplicity, we omit a smoothing prior.

. Given T, the number of photons Tj41 passing through pixel

7 I1s binomial with mean T and success probability e 1% |

. T he complete data loglikelihood is therefore

m—1 .
f@]0) = —d+ziind—Inzgt+ Y [In( 7 )
j=1 Tj+1

oy Iine % + (241 —2;) In(1 — e 4%)).
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Example 4: E Step

. To complete the E step, it suffices to calculate E(:cj | xm, ™)
for each j.

" A
. The unconditional mean u; = E(x;) = de™ “~k=1"k"k,
. On the next slide we show that E(:cj | xm, ™) = i — tm + Tm.

. T his will show in the original notation that
QO |0") = ZZ[ zgzg j"‘(sz]_r )In(1 —e™ ijgj)]

for computable constants T and s” depending on 8™ and the

Yi-

©J
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Example 4: Calculation of E(xz; | zm, 0")

Suppose U and V are Poisson counts. If V is generated from U
by randomly thinning each U point with probability 1 — p, then
U — V is Poisson and independent of V. If U has mean u, then

(L= p
e
[(1 —p)ulje_u_p)u.
7!
Thus, EU-V |V)=Q-p)pand E(U|V)=V4+(1—p)u. Now
apply thisto V =x,, and U =«

'uj-l-k
PriU-V=3j|V=Fk = Uth)

j .
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Example 4: M Step

1. The surrogate function
QEO|6") = ZZ[ z] Lij ]_I_(S'Z,_]_r ) In(l —e” ijej)]
U

separates the parameters.

2. To find the maximum of the part containing Gj, one must
solve a transcendental equation numerically.

3. This is not hard, but the EM algorithm is inferior to the
MM algorithm posed earlier because of the work involved in
computing the constants rT; and s] In essence, one must
exponentiate all of the partial line integrals running from the

source to each intermediate pixel along each projection.
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Concluding Comments on the EM Algorithm

. It always involves missing information. Recognizing an ap-
propriate complete data framework is often fairly natural.

. T he E step can involve tricky conditional expectations. Never
guess at the form of the surrogate. Work through the recipe.

. Convergence can be very slow on some problems and is inti-
mately related to the amount of missing information.

. Intermediate quantities in the algorithm often have useful
statistical interpretations.

. Every EM algorithm is an MM algorithm, so all convergence
results carry over.
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