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R and S-Plus primarily designed for EDA (Exploratory 
Data Analysis)

Easy to express commands to look at aspects of data, 
fit models, simulate.

Gradually, we have been increasingly using it for 

large data, 

programming, and 

software development.

Over 1000 publicly available add-on packages.

So code is run not just by author but by numerous 
other users.

Not just interested in saving human programming time 
but also run-time.

And we want big data problems that wouldn’t ordinarily 
be feasible in R to actually be feasible.

R uses pass-by-value or copy rather than references.

e.g.  any changes that the lm() function makes to the 
data frame in
    lm( y ~ x, data = myData)
do not change the original contents of the myData 
variable.

This is a good thing  -  for users!
Don’t corrupt data and leave it in inconsistent state.

And makes debugging easier.
Can go up to earlier call frame to see original value of a 
n argument in subsequent call.



But of course, making copies is very expensive for large 
datasets.

So R tries to be clever internally and avoid copies 
where possible.

Copy on change, i.e.  
   data$y doesn’t create a copy,
but 
   data$y[data$y == 0 ] = .00001 does.

And R uses lazy evaluation to avoid processing an 
argument until it is needed.

We often create an R script/”program” one line at a 
time
e.g. type command at prompt, get it to work, add it to a 
file, and do the next step.

The result can be an obvious approach that is easy to 
read (good)

but that may not be the most efficient to compute.

For example, we may end up recomputing the same 
thing, e.g. indices of interest, numerous times rather 
than computing once and assigning to a variable.
Y = data[ data$gender == “Female”, “Weight”]
X = data[ data$gender == “Female”, “Height”]

So we end up with unnecessary computations that slow 
things down. 

Of course, if we assign intermediate values to variables, 
we are consuming more memory.  Standard trade-off.

But these issues can matter when we are dealing with 
large’ish amounts of data or computationally intensive 
methods.

So we then sometimes need to write code in a slightly 
more intelligent or less natural way to make things go 
faster.

There are some simple rules of thumb to remember.

And there are tools to help identify where code is 
inefficient so that one can focus on improving just those 
bits.

The typical process is 

do the naive, simple thing

if and only if it turns out to be too slow, find out 

which part is causing the biggest slowdown.

Then improve just that bit.

If can’t improve sufficiently in R code, use compiled 

code via .C()/.Call()/.Fortran().



Use initial implementation to verify that subsequent, 
smarter versions give the same & correct results.

Refine code to make it better.

Sometimes have to think quite differently from obvious, 
mathematical formulation.

“Premature optimization is the root of all evil”
Donald Knuth

Or, optimization - 

Don’t do it

Don’t do it until you really have to.

Profiling

So you write some code, and it runs slowly.
i.e. it won’t complete in time to hand in homework!

Need to make it faster, but how?

Use rules from earlier.

But what if still not fast enough?

Find out what bit is taking the most time and see if you 
can improve its performance.

10

Example - MCMC
You’ve seen how to generate random numbers for a PDF 
f(x) using a few techniques.

Convenient if you can find majorizing function or inverse 
of CDF.

A general approach is Markov Chain Monte Carlo - 
MCMC

Create a mechanism for generating a new random 
number based on current value, i.e. get X(t+1) from X(t).

Subject to quite general conditions, can sample from any 
f using this technique.
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MCMC
R function mcmc() to do this.

Give X(0) (starting value), target distribution 
(stationary), and sample size (n)
And proposal density function and random number 
generator for that proposal density.

Generate potential new value Y from proposal distn. 
centered at X(t). Then toss a biased coin and if heads, 
accept Y as X(t+1); o.w. X(t+1) = X(t)

Brilliance is in determining the bias of the coin 
generally.

Generate n values and then take all but the first 10,000 
say to avoid dependencies on initial value.
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How fast is this?

sizes = c(20, 50, 100, 1000, 10000, 100000)
times = 
  sapply(sizes, 
          function(n) 
           system.time(replicate(7, 
                          mcmc(-5, r, q,
                                 stationary = dnorm, 
                                 n = n, alg = hastings))))

Get user, system and total time for 7 runs for each 
sample size.
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How do we make this go faster?

Find the parts of the code that take the most time

And see if we can make them faster.
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Rprof()
Could use system.time() to time particular pieces, but 
that is tedious
Need to modify existing code, store times, etc.

The function Rprof() will gather data about how code in 
R runs as it is being evaluated.

Call Rprof() to start the collection and tell it to write 
the information to a file,
   Rprof(“profileData.prof”)

Run the code
   mcmc(-10, r, q, sta = dnorm, n = 1000)

Stop the profiling with  Rprof(NULL)
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Analyzing Profile Data

How do we access the profiling data?

Call summaryRprof() with the name of the file 
containing the data.
p = summaryRprof(“profileData.prof”)

Now, p contains summary of time spent in each R 
function that was invoked.

It arranges by total time in function and all functions it 
called, and so on.

Or by “self” - time spent in that function alone 
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Doesn’t tell us the number of times a function was 
called, just the total amount of time spent in that 
function.
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> p$by.self
                 self.time self.pct total.time total.pct
"ifelse"              0.24     12.9       1.14      61.3
"rnorm"               0.24     12.9       0.24      12.9
"stationary"          0.18      9.7       0.18       9.7
"rep.default"         0.16      8.6       0.34      18.3
"rep"                 0.12      6.5       0.46      24.7
"storage.mode"        0.12      6.5       0.18       9.7
"any"                 0.10      5.4       0.10       5.4

So the use of ifelse() is consuming the most time.

Is that in our code, or the functions it calls.

Look at the function mcmc to see. 
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mcmc =
function(x.0 = 0, r, q, stationary, n = 1000,
         algorithm = metropolis)
{
     xs = numeric(n+1)
     xs[1] = x.0
     for(i in 1:n) {
       y = r(xs[i])
       k = algorithm(xs[i], y, stationary, q)
       xs[i+1] = ifelse(runif(1) <= k, y, xs[i])   
       if(is.na(xs[i+1])) 
        stop("Problems with missing value")       
     }

     class(xs) <- "mcmc"
     xs
}

So it is possibly our use of ifelse()

Is there an alternative that we can try to see if it 
improves matters?

Can use 
     xs[ i + 1 ] = if(runif(1) <= k) y else xs[i] 

Change the code, and re-run the profiling.
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So now it is the low-level internal functions runif, 
rnorm, dnorm that take the time.

Mcmc and algorithm which is the hastings() function 
might be improved.

But let’s compare the times with ifelse and if
23

              self.time self.pct total.time total.pct
"runif"            0.16     20.0       0.16      20.0
"rnorm"            0.14     17.5       0.14      17.5
"dnorm"            0.10     12.5       0.10      12.5
"mcmc"             0.08     10.0       0.74      92.5
"algorithm"        0.08     10.0       0.34      42.5
"min"              0.06      7.5       0.16      20.0
"gc"               0.06      7.5       0.06       7.5
"stationary"       0.06      7.5       0.06       7.5
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Vectorize

Pass vector arguments rather than single values to R 
functions.

E.g. sum(x) rather than 
ans = 0
for(i in x)  ans = ans + x[i]

E.g. grep(“abc”, lines) 

And write functions you create to accept vectors.

Avoid concatenation!

When looping and creating the answer such as a matrix 
or vector/list,

preallocate the result as an empty data structure 
with the correct size and 

then fill in the elements.

Do not concatenate the i-th result to the previous ones.

Preallocate Space for the Result 

Consider the following code
ans = numeric()  
for(i in 1:n) 
   ans = cbind(ans, mean(rnorm(1000)))

In each step, we combine the new result with the 
previous ones via cbind.
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Consider the last iteration, i.e. i == n

The result from the previous iteration is a vector with 
n-1 elements.

We then create a new result with n elements.

So before we assign the new result to ans, we have 
approximately 2 copies of the results!

And we have to copy all the data from the original to 
the new result.

This is bad news.
Some computations will not be feasible.

28

Introduces fragmented 
memory with small 
allocations in different 
place



Alternative
We know the result is a numeric vector with n 
elements,
so allocate it first and then assign each iteration’s result 
into the corresponding column.

ans = numeric(n)
for(i in 1:n)
  ans[i] = mean(rnorm(1000))

This does the allocation (for the result) just once and 
doesn’t create new objects, just modifies the existing 
one.

The key thing is that ans[i] doesn’t create a new copy 
of ans, but writes the values into the appropriate 
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Time Comparisons
system.time({ans = numeric() ; for(i in 1:10000) ans = 
cbind(ans, rnorm(10))})
[1] 14.57  4.72 19.62  0.00  0.00

 system.time({ans = matrix(NA, 10, 10000) ; for(i in 
1:10000) ans[,i] =  rnorm(10)})
[1] 0.32 0.01 0.34 0.00 0.00

Of course, need to have multiple measurements to get 
better estimates.

And the characteristics of the machine, etc. matter, but 
still can compare the two meaningfully.
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We could use apply() to make this read more easily and 
be more efficient
     sapply(1:n, function(i) rnorm(10))
or   replicate(n, rnorm(10))

The apply functions allocate the result space for us.

Note that we can define an “anonymous” function in the 
call to sapply().
functions are first class objects in R.

But when we can’t use an apply function, making space 
and writing into that existing space is much faster.
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Why do we need to know about memory?

Because, when you run simulations as for your current 
project, you may run into memory problems. 
It then helps to be able to reason about them.

It is good to be able to determine approximately how 
much memory you will need in a computation. Then you 
can determine if it is feasible or not.

And it can also allow you to specify hints to R for how 
much space it will need and can reserve.

32



Garbage Collection

Note that you never have to tidy up and remove values 
when you no longer need them.

R does it for you, but at a small cost.

When R starts, it allocates a pool of memory it can use 
for vectors, etc.

When R needs to allocate space, it see if it has enough 
and if not, reclaims no-longer used memory via garbage 
collection.

Then allocates the needed space.

The reclaiming of space can take time.
Also, has to grow the pool in certain cases.
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If we know that we will need a certain amount of space 
(how?), then we can tell R to preallocate a big enough 
pool.

Then the garbage collection won’t occur, or at least as 
often.

We can ask for a large amount of memory when 
starting R using, e.g. 
  R --min-vsize=.5G

See help for Startup, Memory
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Start R with default settings, i.e. just run R with no 
extra command line arguments.

Now, let’s create a large matrix - 1000 x 1000

Before we do, ask R to tell us when it does garbage 
collection/resizing of the available space.
Use gcinfo(TRUE).

35

gcinfo(TRUE)

m = matrix(rnorm(1000 * 1000), 1000, 1000)

Garbage collection 4 = 1+0+3 (level 2) ... 
180323 cons cells free (51%)
9.6 Mbytes of heap free (95%)
Garbage collection 5 = 1+0+4 (level 2) ... 
180330 cons cells free (51%)
9.6 Mbytes of heap free (54%)
Garbage collection 6 = 1+0+5 (level 2) ... 
180333 cons cells free (51%)
9.6 Mbytes of heap free (37%)

object.size(m)
[1] 8000120
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Now, let’s try that again, but this time start R with 2Gb 
of memory.
Don’t do this unless you know you need it!

Start R and tell it to use 2Gb of space for data objects
  R --min-vsize=2G

37

Again, turn on reporting of garbage collection
  gcinfo(TRUE)

Now, allocate the same matrix.
m = matrix(rnorm(1000 * 1000), 1000, 1000)

Note, there was no garbage collection.
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General Lesson

Don’t normally have to tell R about the memory you will 
need

But, if you have knowledge about the application, you 
can provide it and often get some improvement.

And, when working with large data and complex tasks,  
it is important to be able to know how much memory an 
object will consume and whether you can handle 2, 3 or 
4 copies of it in memory.
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Fragmentation

Fragmentation happens when we create numerous 
objects and then remove some and leave holes in the 
allocated memory.

x1 = rnorm(10000)
x2 = rnorm(10000)
y = 10 * x1 + 20 * x2
rm(x2)

40



When we remove x2, we are left with a big hole.

If we go to allocate space for say 10001 elements, we 
cannot use this space.

We may have lots of little pieces of space which 
cumulatively total more than the desired amount of new 
space.

But since they are not contiguous, we cannot use them 
and so we cannot satisfy the new request.

We don’t have much control over this in R, but it is good 
to know about it.
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Recursion

Recursion is a technique that is often used to program 
certain tasks.

It is essentially a way to loop or iterate over different 
states.

It can be very natural and greatly simplify certain 
problems.

It can also be quite inefficient and more clumsy 
iterative techniques can be more efficient.
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Fibonacci Numbers

Fibonacci introduced a sequence of numbers defined by 
the n-the element Fn

Fo = 0, 
F1 = 1
Fn = Fn-1 + Fn-2,  n > 1

It is a sequence that arises in many different contexts 
and has amazing mathematical properties.

For our purposes, note that the value for n is computed 
from previously computed values, i.e. for n - 1 and n - 2.
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Fibonacci function
Let’s write an R function to  calculate the value of the 
Fibonacci sequence for a given n.

fibonacci =
function(n) {
  if(n == 0 || n == 1)
    return(n)

  fibonacci(n - 1) + fibonacci(n - 2)
}

This is nice and simple.
The function calls itself - recursion.
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Basics of Recursion

The function 

calls itself 
   with a different argument!

does some computations to solve the simple or special 
cases on the original argument, e.g. n = 0, 1.

Any recursive algorithm can be written in an iterative 
manner - i.e. using loops.
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Iterative Fibonacci
fib2 =
function(n)
{
  if(n == 0 || n == 1) return(n)
  if(n == 2)  return(1)

  f1 = f2 = 1
  for(i in seq(2, n-1)) {
    f = f1 + f2
    f2 = f1
    f1 = f    
  }
  f
}  
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Let’s compare these in terms of speed
Which one will be faster?

Can you compare them in your head or on paper?

Or empirically
Create a simple experiment to measure the time
  do 20 repetitions each calculating F20.
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How do we measure time for a computation:
  system.time(command)

Get back a vector with 5 elements:
  user time, system time, cpu time (and sub-processes)

48



 system.time(fib2(20))
[1] 0 0 0 0 0

Finite resolution that depends on the operating system.
(usually 1/1000 second)

So repeat the calculations many times to get longer 
times. Then divide by the number of times performed.

fib2.times = 
   system.time(sapply(1:1000, function(x) fib2(20)))
[1] 0.10 0.00 0.11 0.00 0.00

So total time of .11 seconds, per call .11/1000

49

The iterative version is much, much faster as n gets big. 

Repeat it for various values of n, e.g. 1, 2, ..., 30

Then plot n & time taken and see if you see any 
relationship.

fib2.times = 
  sapply(1:30, 
           function(i)
              system.time(sapply(1:1000, 
                                     function(x) fib2(i))))

Same for fibonacci, and dynFibonacci.
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When 
plotted on 
the 
appropriate 
scale, it is 
approximat
ely linear.



Dynamic Programming

Another approach is to use the simple recursive 
algorithm but to store the values we have previously 
computed.
Access these in subsequent calls.
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Dynamic Fibonacci
.Fibonacci<- c(1, 1)
dynFibonacci <-
function(n)
{
  top = length(.Fibonacci)
  if(top >= n)
      return(.Fibonacci[n])
  
 for(i in seq(top + 1, n)) {
     .Fibonacci[i] <<- .Fibonacci[i - 1]  + .Fibonacci[i - 2] 
  }
  .Fibonacci[n]
}
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Call dynFibonacci(10), then dynFibonacci(6) and it is 
already calculated and stored.

dynFibonacci(20) can start from the previous highest 
element, i.e. F10.

This is called memoization and is essentially Dynamic 
Programming.
 Solve a problem by solving smaller problems and store 
the results for these smaller problems for repeated 
reuse.
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