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Some references for MCMC are

1. Tanner, M. (1993) Tools for Statistical Inference, Method for
Exploration of Posterior Distributions and Likelihood Func-
tions.

2. Gilks, W., Richardson, S. and Spiegelhalter, D. (1996) Markov Chain
Monte Carlo in Practice.

3. Gelman, A., Carlin, J., Stern, H and Rubin, D. (1995) Bayesian Data
Analysis.

A reference for Markov Chains is

1. Ross, Sheldon, (1989) Introduction to Probability models 4th
Edit.
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1.1 MCMC and Bayesian Statistics

In the last 15 years there has been an explosion of work in Bayesian statistics.
As you recall a Bayesian statistician chooses a prior distribution over the

parameter space. He then determines the posterior distribution. As Dr.
Leonard observed, once we know the posterior distribution, Bayesian analysis
is often fairly easy. Often choosing the prior and computing the posterior
are the hard parts.

In the past, one of the problems with Bayesian statistics has been finding
the posterior distribution. In recent years this problem has been controlled
by using MCMC to simulate the posterior.
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1.2 Markov chains

A discrete time Markov Chain is a sequence of random variables in which
the conditional distribution of a present observations given a set of past
observations only depends on the past through the most recent observation.
In symbols

k1 < k2..., kp ⇒ Xt |
(
Xt−k1 , ..., Xt−kp

)
= Xt | Xt−k1 .

A Markov chain is time-homogenious if the distribution of the observa-
tions does not change over time. In symbols

Xt | Xs = Xt−s | X0.

In what follows, all Markov chains are time-homogenious.
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Example (symmetric random walk (drunkards walk)) This is a Markov
chain on the set of all integers in which

Xt | Xt−1 =

{
Xt−1 + 1 with p = .5
Xt−1 − 1 with p = .5

The possible values for the Markov chain are called the states of the
Markov chain. A stationary distribution π for a Markov chain is a distribution
over the states such that if we start the Markov chain in π, we stay in π. A
limiting distribution π,is a distribution over the states such that whatever the
starting the distribution π0, the Markov chain converges to π. It is easily seen
that if there is a limiting distribution π, then it is unique, and it is the only
stationary distribution. It is easier to find a stationary distribution than a
limiting distribution. So to find a limiting distribution, we find a stationary
distribution and then argue that it must be the limiting distribution.
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The main part of that argument is the ergodic theorem which we now
describe.

We say that a Markov chain has period k > 1 if it can only return to
its present state Xt at times t + k, t + 2k, .... For example the symmetric
random walk has period 2. We say a Markov chain is aperiodic if does not
have period k for any k > 1.

We say that the Markov chain is irreducible if we can get from any state
to any other states (possibly in several steps). The symmetric random walk
is irreducible.

We say that the Markov chain is recurrent if we are sure to come back to
any state and transient otherwise. We say that a recurrent state is positive
recurrent or null recurrent if the expected time till we return is finite or
infinite. The symmetric random walk can be shown to be null recurrent.

1. Ergodic theorem. A Markov chain which aperiodic, irreducible and
positive recurrent has a limiting distribution.
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We now discuss each of the three assumptions of this theorem.

1. The Markov chains we consider have some chance of staying where they
are, so are aperiodic

2. Often, the Markov chains we consider have bad ”mixing” which means
they are nearly reducible, i.e., that the are proportions of the state space
between which transitions rarely occur. Although the Markov chain
would converge in this situation, the convergence is very slow. Often
modifications a are made to the Markov chain to improve mixing

3. Positive recurrence is often hard to establish for the Markov chains we
consider. One nice situation is if a Markov chain has only a finite
number of states and is irreducible, then it must be positive recurrent.
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1.3 MCMC

1.3.1 Gibbs Sampling

Suppose we want to simulate the random vector (X, Y, Z) having joint density
f (x, y, z). Suppose we can find and simulate from the conditional distribu-
tions of

X | (Y, Z) , Y | (X, Z) and Z | (X, Y )

To simulate X, Y, Z, we start with initial values x0, y0, z0. These could be sam-
pled from an arbitrary distribution or just arbitrary numbers. We first update
the X from X | (Y = y0, Z = z0) getting x1. We then update Y from Y |
(X = x1, Z = z0) getting y1 and then update Z from Z | (X = x1, Y = y1) .
This finishes the first cycle. Notice that we always update from the most
recent values for the random variable. We can continue iterating this chain
as many cycles as we need.
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It is easily seen that this is a (time-homogenious) Markov chain cycle
by cycle and that f (x, y, z) is a stationary distribution for this Markov
chain. Therefore, if the conditions of the ergodic theorem are satisfied,
then f (x, y, z) is a limiting distribution of this chain. Therefore if we run
the chain a long time (burn it in), the observations we get will have this
distribution.
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We again discuss the three conditions of the theorem

1. The chain is always aperiodic

2. Bad mixing is typically apparent. but must be fixed. Typically some
steps are added to the chain to improve mixing.

3. A transient chain is usually apparent. Things drift off. A null recur-
rent chain is much harder to detect. Fortunately, null recurrent chains
are somewhat rare.
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1.3.2 Single path vs. multiple path

Initially there were two method suggested for implementing the Gibbs sam-
pler.

The multiple-path method simulates the MC man times, running it for
a long enough time for burn in and then taking one observation from each
chain.

The single-path simulates the MC once waiting first for burn in and then
taking many observations from the one path, presumably pretty far apart.
Further parts of the ergodic theorem can be used to argue that averages of
these random variable converge to the appropriate things.
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The single-path method seems more efficient as the following argument
shows. Suppose we have simulated a single chain for a long time until it has
been burned in. Then it seems to make more sense to continue on the chain
which is burned in (single path) vs. starting over (multiple path).

However, the multple-path method appears to have better diagnostics.
One such diagnostic helps determine if we have run the chain long enough.
We choose the starting values of one random variable from a distribution
which is more dispersed than the limiting distribution should be. The dis-
tribution of the simulated values should have decreasing variance until the
limiting distribution is reached.

Today, it seems that most people use a compromise, sampling from several
chains, each many times.
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1.3.3 An example

1. Example Suppose we observe Y1, ..., Y20 independent

Yi ∼ Poi (θ) , i = 1, ..., κ, Yi ∼ Poi (λ) , 1 = κ + 1, ..., 20

Note the change point at κ. We assume that θ, λ and κ are unknown
parameters. To do a Bayesian analysis, we assume in the prior, θ, λ
and κ are independent,

θ ∼ exp (.25) , λ ∼ exp (.25)

and κ is uniform on 0, ..., 20. We want to find the posterior joint distri-
bution of

(θ, λ, κ | (Y1, ..., Y20) = Y)

Note that to use Gibbs sampling, we need

θ | (λ, κ,Y) , λ | (θ, κ,Y) , κ | (θ, λ,Y)
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It is easily seen that

θ | (λ, κ,Y) ∼ Γ

(
1 +

κ∑

1

Yi, (4 + κ)−1

)

λ | (θ, κ,Y) ∼ Γ


1 +

20∑

κ+1

Yi, (4 + κ)−1




f (κ | (θ, λ,Y = y)) =
exp (− (λ− θ) κ)

(
λ
θ

)∑κ

1
yi

∑20
κ=0 exp (− (λ− θ) κ)

(
λ
θ

)∑κ

1
yi

To run the Gibbs sampler, we would start with arbitrary κ0, θ0, λ0.
We would first update κ, using its conditional distributions (a finite
distribution so easy to simulate) and then update θ an λfrom their
conditional priors. We would continue updating in this fashion till
the burn in was over and the begin taking values for the simulation.
Typically we would run this several times using parallel processing.
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1.4 Metropolis-Hastings method

Suppose we want to simulate a random variable X having density function
f (x) , where

f (x) =
g (x)∫
g (x) dx

Suppose we can simulate Y with conditional density q (y | x) Follow the fol-
lowing steps at the k+1 stage.

1. Simulate yk+1 from q (yk+1 | xx)

2. Accept this new observation and set xk+1 = yk+1 with probability

P = min

(
g (yk+1) q (xk | yk+1)

g (xk) q (yk+1 | xk)
, 1

)

3. Return to step 1.
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In particular if Y is independent of X, with marginal density q (y) , then

P = min

(
g (yk+1) q (xk)

g (xk) q (yk+1)
, 1

)

Furthermore, if q and g are proportional, P = 1, and the new observation is
never rejected. Therefore it is advantageous to choose the new distribution
q as close to the distribution we want f as possible.

To show that the method works, we note first that it is a time-homogenious
Markov chain. We need to show that the distribution we want is the sta-
tionary distribution, which is true but not obvious. Then if the conditions of
the ergodic theorem are satisfied, the distribution is a limiting distribution.

Often we do a Metropolis-Hastings step in a Gibbs sampler. In this case
we can get by with one iteration of the M-H algorithm. The model is just a
bigger Markov chain with the right stationary distribution.
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1.5 Other algorithms.

Several other MCMC algorithms have been suggested in recent years, such as
reversible jump. To show that these algorithms are MCMC algorithms, we
need only show that they a Markov chains with the appropriate stationary
distribution. Then we have to look at conditions for the ergodic theorem.
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