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Abstract We introduce a class of spatial random effects
models that have Markov random fields (MRF) as latent
processes. Calculating the maximum likelihood estimates
of unknown parameters in SREs is extremely difficult,
because the normalizing factors of MRFs and additional
integrations from unobserved random effects are computa-
tionally prohibitive. We propose a stochastic approximation
expectation-maximization (SAEM) algorithm to maximize
the likelihood functions of spatial random effects models.
The SAEM algorithm integrates recent improvements
in stochastic approximation algorithms; it also includes
components of the Newton-Raphson algorithm and the
expectation-maximization (EM) gradient algorithm. The
convergence of the SAEM algorithm is guaranteed under
some mild conditions. We apply the SAEM algorithm
to three examples that are representative of real-world
applications: a state space model, a noisy Ising model, and
segmenting magnetic resonance images (MRI) of the human
brain. The SAEM algorithm gives satisfactory results in
finding the maximum likelihood estimate of spatial random
effects models in each of these instances.
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1 Introduction

Spatial random effects models, also called hidden Markov
models, represent a natural extension of Markov random
fields (Besag, 1986, 1974). Spatial random effects models
are very useful for accommodating overdispersion among
outcomes (Zeger et al., 1988) and for interpolating or
smoothing spatial and image data (Diggle et al., 1998).
Special classes of spatial random effects models include:
generalized linear mixed models, such as those used in
biomedical studies (Breslow and Clayton, 1993; Lee and
Nelder, 1996); spatial generalized linear mixed models
(SGLMM), as used in geostatistics (Christensen and
Waagepetersen, 2002; Zhang, 2002); and noisy Gaussian
Markov random fields (GMRF), as applied for image seg-
mentation and restoration in image analysis (Saquib et al.,
1998; Rajapakse et al., 1997; Marroquin et al., 2003).

Because of the utility of spatial random effects models,
developing procedures for estimating the maximum likeli-
hood estimate of spatial random effects models has been an
issue of central importance (Marroquin et al., 2003; Qian and
Titterington, 1991). Spatial random effects models involve
latent MRFs, whose normalizing factors are notorious for
their computational complexity. This complexity makes
calculating the maximum likelihood estimate of MRFs,
and therefore the maximum likelihood estimate of spatial
random effects models, prohibitively difficult. A second
issue is the additional integrations found in spatial random
effects models. Most existing procedures for approximating
the maximum likelihood estimate of MRFs include the
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Monte Carlo likelihood inference (Geyer and Thompson,
1992), Monte Carlo Newton-Raphson sampling (Penttinen,
1984), numerical approximations (Pettitt et al., 2003), and
the stochastic approximation algorithm (Younes, 1989;
Moyeed and Baddeley, 1991; Gu and Zhu, 2001). However,
these algorithms cannot be applied directly to calculating
the maximum likelihood estimate of spatial random effects
models because they do not account for the presence in
spatial random effects models of additional integrations
from unobserved random effects (Qian and Titterinton,
1991). Rydén (1997) proposed a stochastic approximation
algorithm for recursive estimation of hidden Markov models,
Delyon et al. (1999) proposed a stochastic approximation
EM algorithm for curved exponential families with random
effects, and Zhang (2002) proposed a Monte Carlo EM
algorithm for computing the maximum likelihood estimate
of spatial generalized linear mixed models. However, nei-
ther of these models contains any normalizing factors that
are intractable; the estimation algorithms for these models
therefore cannot be applied to spatial random effects models.

We propose an SAEM algorithm for computing the max-
imum likelihood estimate of spatial random effects mod-
els, and we give a proof of its convergence under some
conditions. Examples of a state space model, a noisy Ising
model, and image segmentation in MRI illustrate the ef-
fective performance of our SAEM algorithm in calculating
the maximum likelihood estimate of spatial random effects
models.

2 Spatial random effect models

2.1 Definition of spatial random effects models

We consider a data set that is composed of a response y j (si )
and covariate vector x j (si ) for j = 1, . . . , mi at a site si ∈ S
for i = 1, . . . , n, where S = {si : i = 1, . . . , n} is a known
discrete index set. For instance, in image processing, si rep-
resents the location of a particular voxel/pixel. Furthermore,
we assume that there is an unobserved d × 1 random effect
vector b(si ) for each y(si ) = (y1(si ), . . . , ymi (si ))T . Spatial
random effects models are defined as follows.

(i) Conditional on b = (b(s1), . . . , b(sn))T , the components
of Y = ( y(s1), . . . , y(sn))T are mutually independent,
and the conditional density of y(si ) given b is a member
of the exponential family (McCullagh and Nelder, 1989)
given by

p( y(si )|b; α, β)=
mi∏

j=1

exp{φ j (si )[y j (si )θ j (si )−a(θ j (si ))]

+c(y j (si ), φ j (si ))}, (1)

where φ j (si ) = φ j (α, b(si )), α is an unknown q1 × 1 pa-
rameter vector, and a(·) and c(·) are known continuously
differentiable functions. For a known link function h1(·),

µ j (si ) = E[y j (si )|b] = h1(x j (si )
T β, b(si )), (2)

where β is a q2 × 1 parameter vector.
(ii) The joint distribution of random effects b has the Gibbs

form:

p(b|τ ) = exp{−U (b)T h2(τ ) − log C(τ )}, (3)

where h2(·) is a known function, τ is a q3 × 1 vector
characterizing the granularity of MRF, and U (b)T h2(τ )
is a potential (or energy) function, which exhibits the
interaction between random effects (Besag, 1974). In
addition, the normalizing factor C(τ ), called a partition
function, has the form

C(τ ) =
∫

b∈B
exp{−U (b)T h2(τ )}m(db), (4)

where B is the minimal sample space of b and m(db) is
either the Dirac’s delta measure or db.

The likelihood function of observed data Y = yo for an
spatial random effects model is given by

L(ξ ; yo) =
∫

B
exp{−U (b)T h2(τ )

− log C(τ )}
n∏

i=1

p( y(si )|b; α, β)m(db), (5)

where ξ T = (αT , βT , τ T ) is a q × 1 (q = q1 + q2 + q3) vec-
tor of unknown parameters. Because the integration above
is usually of very high dimension and/or C(τ ) is difficult to
obtain analytically, evaluating L(ξ ; yo) is computationally
prohibitive.

2.2 Examples of spatial random effects models

We examine three examples of spatial random effects mod-
els:

Example 1 (Generalized linear mixed models). General-
ized linear mixed models usually assume that random
effects b(si ) are normally distributed with zero mean and
covariance matrix �b and b(si ) and b(si ′) are independent
of each other for si �= si ′ . See, for example, Breslow
and Clayton (1993), Aitkin (1996), and Zhu and Lee
(2002), among many others. For generalized linear mixed
models, si ∈ S can represent either a subject or a cluster
in a longitudinal study or a family in a familial study.
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In particular, U (b)T h2(τ ) = 0.5
∑n

i=1 b(si )T �−1
b b(si )

and log C(τ ) = 0.5n log |�b| + 0.5nd log(2π ), where τ

contains all unknown parameters in �b.

Example 2 (State space models). State space models repre-
sent further extensions of generalized linear mixed models by
considering time series dependence among random effects
b(si ) (Chan and Ledolter, 1995; Durbin and Koopman, 1997,
2000). In this case, each si denotes a time point such that
s1 < s2 < · · · < sn . For example, in the time series of count
data considered in Section 4.1, y(si ) follows the Poisson dis-
tribution with mean µ(si ) = exp(x(si )T β + b(si )). Assume
that b(s1) is given and {b(si )} is a stationary Gaussian AR(1)
process, that is, b(si ) = ρb(si−1) + εi , where {εi } is identi-
cally and independently distributed as N (0, σ 2

ε ). Thus, τ =
(ρ, σ 2

ε )T , U (b)T h2(τ ) = ∑n−1
i=1 [b(si+1) − ρb(si )]2/(2σ 2

ε ),
and log C(τ ) = [(n − 1) /2] log(σ 2

ε ).

Example 3 (Spatial random effects models for image seg-
mentation). Image segmentation is among the several im-
portant image processes that have been modeled by using
spatial random effects models since the seminal papers by
Geman and Geman (1984) and Besag (1974). See, for ex-
ample, Winkler (1995), Li (2001), Rajapakse et al. (1997),
and Marroquin et al. (2003), among many others. For im-
age segmentation, si ∈ S denotes either a pixel site or a line
site in a pixelated image, Y denotes the observed image,
and each b(si ) in b denotes the true identity at the voxel si .
The purpose of image segmentation is to classify Y into M
nonoverlapping regions {R1, . . . , RM}.

A simple example of spatial random effects models
for image segmentation (Qian and Titterington, 1991;
Besag, 1986; Derin and Elliott, 1987) assumes that
Yi |b(si ) ∼ N (µ(b(si )), σ 2) for i = 1, . . . , n, and p(b|τ ) =
exp{τ ∑si ∼s j

δ(b(si ), b(s j )) − log C(τ )}, where b(si ) takes
value from 1 to M , the summation is over nearest-neighbor
pairs si ∼ s j , and δ(x, z) is the Kronecker function equaling
to 1 when x = z and 0 otherwise. The potential func-
tion U (b) = −∑si ∼s j

δ(b(si ), b(s j )) and the normalizing
factor C(τ ) = ∑

b exp(−U (b)τ ), which involves Mn

terms.
We consider a generalization of a spatial random effects

model for image segmentation of MRI from Zhang et al.
(2001) as follows. The observation y(si ) at a particular voxel
si can be modeled as

y(si ) = x0(si )
T β0 +

M∑

k=1

[x1(si )
T β(k) + εk(si )]δ(b(si ), k),

(6)

where x0(si ) and x1(si ) are, respectively, covariate vectors
characterizing common and individual features at the

voxel si , b(si ) ∈ {1, . . . , M}, εk(si ) ∼ N (0, eσk ), and βk

is the parameter vector associated with the class Rk .
We further assume that the joint distribution of the la-
bel fields b is given by p(b|τ ) = exp{∑n

i=1 τ1(b(si )) +∑
si ∼s j

τ2δ(b(si ), b(s j )) − log C(τ )}, where τ1(b(si )) may
depend on the value of b(si ) and τ1(1) is set to zero to avoid
redundancy, τ2 controls the granularity of MRF, and τ =
(τ1(2), . . . , τ1(M), τ2)T . The potential function U (b)T τ =
(−∑n

i=1 δ(b(si ), 2), . . . ,−∑n
i=1 δ(b(si ), M),−∑

si ∼s j
δ(b

(si ), b(s j ))τ and the normalizing factor C(τ ) is ob-
tained by summing all possible configurations b,
C(τ ) = ∑

b exp(−U (b)T τ ). If τ2 = 0, then log C(τ ) =
n log[1 +∑M

k=2 exp(τ1(k))] and the above spatial random
effects model reduces to a mixture linear regression model
(Zhang et al., 2001; Zhu and Zhang, 2004).

3 SAEM algorithm

Under the spatial random effects model specified by (1), (2),
and (3), the maximum likelihood estimate of ξ , denoted by
ξ̂ = (α̂, β̂, τ̂ ), is defined by

L(ξ̂ ; yo) = max
ξ

L(ξ ; yo). (7)

Because L(ξ ; yo) in (5) is computationally intractable, it is
infeasible to maximize the likelihood function of observed
data directly. Instead, we consider the first-order and second-
order partial derivatives of the log-likelihood function in
order to use gradient-type algorithms, such as the Newton-
Raphson and Gauss-Newton algorithms (Ortega, 1990).

3.1 First-order and second-order derivatives of the
log-likelihood function

The first-order and second-order derivatives of the
log-likelihood functions can be derived by using the
log-likelihood functions of complete data, denoted by
lc(ξ ; b, yo), which is given by

n∑

i=1

mi∑

j=1

{φ j (si )[y j (si )θ j (si ) − a(θ j (si ))] + c(y j (si ), φ j (si ))}

−U (b)T h2(τ ) − log C(τ ). (8)

From the missing information principle, the first-order
derivative of L(ξ ; yo), called the score function, can be writ-
ten as

sξ (ξ ; yo) = ∂ξ log L(ξ ; yo) = E[Sξ (ξ ; b)| yo, ξ ], (9)

where Sξ (ξ ; b) = ∂ξ lc(ξ ; b, yo) and E[·| yo, ξ ] denotes that
the expectation is taken with respect to the conditional
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distribution p(b|Y = yo, ξ ). In addition, we use ∂ and ∂2

to denote the first-order and second-order derivatives with
respect to a parameter vector, say, ∂ξ a(ξ ) = ∂a(ξ )/∂ξ and
∂2
ξ a(ξ ) = ∂2a(ξ )/∂ξ∂ξ T . To calculate the second-order

derivative of the log-likelihood function, we apply Louis’s
(1982) formula to obtain

− ∂2
ξ log L(ξ ; yo) = E[Iξξ (ξ ; b) − Sξ (ξ ; b)⊗2| yo, ξ ]

+ sξ (ξ ; yo)⊗2, (10)

where for vector a, a⊗2 = aaT and Iξξ (ξ ; b) = −∂2
ξ lc

(ξ ; b, yo) denotes the information matrix for complete data.
We obtain explicit forms of the first-order and

second-order derivatives of lc(ξ ; b, yo). By differentiating
lc(ξ ; b, yo) with respect to ξ , we obtain

Sα(ξ ; b) =
n∑

i=1

mi∑

j=1

∂αφ j (si )[y j (si )θ j (si ) − a(θ j (si ))

+ ∂φ j c(y j (si ), φ j (si ))],

Sβ(ξ ; b) =
n∑

i=1

mi∑

j=1

φ j (si )e j (si )∂βθ j (si ), and (11)

Sτ (ξ ; b) = −U (b)T ∂τ h2(τ ) − ∂τ log C(τ ),

where e j (si ) = y j (si ) − µ j (si ). With some algebraic manip-
ulation, we obtain

Iββ(ξ ; b)=
n∑

i=1

mi∑

j=1

{
φ j (si )∂βθ j (si )

T
[
∂2
θ j

a(θ j (si ))
]
∂βθ j (si )

−φ j (si )e j (si )∂
2
βθ j (si )

}
,

Iβα(ξ ; b)=−
n∑

i=1

mi∑

j=1

∂αφ j (si )e j (si )∂βθ j (si ),

Iττ (ξ ; b)=∂2
τ [U (b)T h2(τ )] + ∂2

τ log C(τ ), (12)

Iαα(ξ ; b)=−
n∑

i=1

mi∑

j=1

∂2
αφ j (si ){[y j (si )θ j (si ) − a(θ j (si ))]

+ ∂φ j c(y j (si ), φ j (si ))}

−
n∑

i=1

mi∑

j=1

∂αφ j (si )
T ∂2

φ j
c(y j (si ), φ j (si ))∂αφ j (si ),

Iβτ (ξ ; b)=0, and Iατ (ξ ; b) = 0.

Because Iβα(ξ ; b) is close to zero at the maximum likelihood
estimate, we set Iβα(ξ ; b) = 0 in the SAEM algorithm, which
leads to a stable algorithm when the initial parameters are
far from the maximum likelihood estimate.

To calculate the score function in (9) and the information
matrix in (10), we need to calculate ∂τ log C(τ ) and

∂2
τ log C(τ ). Following Gelman and Meng (1998), we

have

∂τ log C(τ ) = −Eτ

[
U (b)T ∂τ h2(τ )

]
and

∂2
τ log C(τ ) = −Eτ [J (τ ; b)] − {∂τ log C(τ )}⊗2 , (13)

where J (τ ; b) = ∂2
τ [U (b)T h2(τ )] − [U (b)T ∂τ h2(τ )]⊗2 and

Eτ is taken with respect to the MRF (3). One way to calculate
∂τ log C(τ ) and ∂2

τ log C(τ ) is to use numerical integration
by using Eq. (13); however, the numerical integration is ac-
curate only in a few special cases. Another way is to resort
to Monte Carlo methods (Liu, 2001; Møller, 1999; Roberts
and Casella, 1999; Gu and Zhu, 2001). If we can simulate
{bk : k = 1, . . . , Nk} from the MRF (3), then we can use Eq.
(13) to obtain the Monte Carlo approximation of ∂τ log C(τ )
and ∂2

τ log C(τ ). Moreover, Eq. (13) is also the basis for
the method of path sampling for estimating C(τ ) at any τ

(Gelman and Meng, 1998; Huang and Ogata, 2001; Pettitt
et al., 2003). Explicitly, the path sampling method is based
on the following formula:

log C(τ ∗∗) − log C(τ ∗) =
∫ τ ∗∗

τ ∗
∂τ log C(τ )dτ

= −
∫ τ ∗∗

τ ∗
Eτ [U (b)T ∂τ h2(τ )]dτ.

Thus, the Monte Carlo methods can be used to approximate
Eτ [U (b)T ∂τ h2(τ )] at each τ and then estimate log[C(τ ∗∗)] −
log[C(τ ∗)].

We use Eqs. (11), (12), and (13) to calculate the
first-order and second-order derivatives of the likelihood
functions of observed data. The score function can be
written as (Sα(ξ ; b)T , Sβ (ξ ; b)T , [Sτ,1 − Sτ,2]T )T , where
Sτ,2 = ∂τ log C(τ ) and Sτ,1 = −Eξ [U (b)T ∂τ h2(τ )| yo, ξ ].
We define

I1(ξ ; b) =

⎛

⎜⎝
Iαα(ξ ; b) 0 0

0 Iββ(ξ ; b) 0

0 0 ∂2
τ [U (b)T h2(τ )]

⎞

⎟⎠ and

I2(ξ ; b) = −

⎛

⎜⎝
Sα(ξ ; b)

Sβ(ξ ; b)

−U (b)T ∂τ h2(τ )

⎞

⎟⎠

⊗2

.

The information matrix −∂2
ξ log L(ξ ; yo) is given by

Eξ [I1(ξ ; b)| yo, ξ ] +
(

0 0

0 −Eτ [J (τ ; b)] − (Sτ,2)⊗2

)

+Eξ [I2(ξ ; b)| yo, ξ ]

+
(

0 0

0 −(Sτ,2)⊗2+Sτ,1ST
τ,2 + Sτ,2ST

τ,1,

)
+ sξ (ξ ; yo)⊗2.

(14)
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3.2 Basic steps of the SAEM algorithm

At the k-th iteration, ξ k is the current estimate of ξ̂ ; hk ,
the current estimate of sξ (ξ̂ ; yo); Sk

τ,1 is the current estimate
of Eξ̂ [−U (b)T ∂τ h2(τ )| yo, ξ̂ ]; Sk

τ,2, the current estimate of
−∂τ log C(τ̂ ); �k

1, the current estimate of Eξ̂ [I1(ξ̂ ; b)| yo, ξ̂ ];
�k

2, the current estimate of Eξ̂ [I2(ξ̂ ; b)| yo, ξ̂ ]; and �k
3, the

current estimate of Eτ̂ [J (τ̂ ; b)]. We assume that �τ (·, ·) is
the Markov transition probability of the Metropolis-Hasting
(MH) algorithm used to simulate from the MRF (3), and
� yo,ξ

(·, ·) is the transition probability of the MH algorithm
used to simulate from the conditional distribution of b given
yo and ξ .

Step 1. At the kth iteration, set bk,0 = bk−1,Nk−1 and
by,k,0 = by,k−1,Nk−1 . Generate bk = (bk,1, . . . , bk,Nk ) and
by,k = (by,k,1, . . . , by,k,Nk ) from the transition probabilities
�τ k−1 (bk,i−1, ·) and � yo,ξ

k−1 (by,k,i−1, ·), respectively.

Step 2. Update the seven estimates as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ k = ξ k−1 + γk[�(t)k]−1 H (ξ k−1; bk, by,k),

hk = hk−1 + γk(H (ξ k−1; bk, by,k) − hk−1),

�k
1 = �k−1

1 + γk
(
I 1(ξ k−1; by,k) − �k−1

1

)
,

�k
2 = �k−1

2 + γk
(
I 2(ξ k−1; by,k) − �k−1

2

)
,

�k
3 = �k−1

3 + γk
(
J (τ k−1; bk) − �k−1

3

)
,

Sk
τ,1 = Sk−1

τ,1 + γk
(−U (by,k)T ∂τ h2(τ k−1) − Sk−1

τ,1

)
,

Sk
τ,2 = Sk−1

τ,2 + γk
(
Û (bk)∂τ h2(τ k−1) − Sk−1

τ,2

)
,

(15)

where t ∈ [0, 1], J (τ ; bk) = N−1
k

∑Nk
i=1 J (τ ; bk,i ),

I 1(ξ ; by,k) =
Nk∑

i=1

I1(ξ ; by,k,i )/Nk,

I 2(ξ ; by,k) =
Nk∑

i=1

I2(ξ ; by,k,i )/Nk,

U (by,k)T ∂τ h2(τ ) = Nk
−1

Nk∑

i=1

U (by,k,i )
T ∂τ h2(τ ),

Û (bk)T ∂τ h2(τ ) = Nk
−1

Nk∑

i=1

U (bk,i )
T ∂τ h2(τ ),

H (ξ ; bk, by,k) =
(

1

Nk

Nk∑

i=1

Sα(ξ ; by,k,i )
T ,

1

Nk

Nk∑

i=1

Sβ(ξ ; by,k,i )
T ,

[−U (by,k) + Û (bk)]T ∂τ h2(τ )

)T

.

In addition, �(t)k is a current estimate of E[Iξξ (ξ ; b)
−t Sξ (ξ ; b)⊗2| yo, ξ ] + sξ (ξ ; yo)⊗2 given by

�k
1 + [hk]⊗2 + t�k

2

+
(

0 0

0 −�k
3 − (1 + t)(Sk

τ,2)⊗2 + t Sk
τ,1SkT

τ,2 + t Sk
τ,2SkT

τ,1,

)
.

(16)

Finally, the gain constants sequence {γk} satisfies the follow-
ing conditions:

0 ≤ γk ≤ 1 for all k,

∞∑

k=1

γk = ∞ and
∞∑

k=1

γ 2
k < ∞.

(17)

An important feature of the SAEM algorithm is that it
uses a gain constants sequence {γk} to handle the noise in
approximating ∂ξ log L(ξ ; yo) and ∂2

ξ log L(ξ ; yo) in Step 2
(Robbins and Monro, 1951; Lai, 2003). In principle, the
choice of Nk should not affect the convergence of the
stochastic approximation algorithm, but a good choice of
Nk can improve the performance of the SAEM algorithm.
At the end of the SAEM algorithm, �k(1), �k(0), and
�k(0) − �k(1) can be used to estimate the observed-data,
completed-data and missing-data information matrix,
respectively (Louis, 1982). For some models, �k(1) may not
be positive definite, but the corresponding �k(0) is positive
definite (Lange, 1995). Based on three examples in Section
4, we suggest using �k(0) in the SAEM algorithm.

3.3 Two stages of the SAEM algorithm

Following Gu and Zhu (2001), our procedure to find ξ̂ de-
fined by (7) is composed of two stages. The main idea of the
two stages is based on the observation that, if the starting
point is not in the neighborhood of the maximum likelihood
estimate, then the SAEM algorithm will usually converge
slowly. In Stage I, we use a large gain constants sequence
so that the parameter will move quickly into the vicinity
of the maximum likelihood estimate. In Stage II, we use a
small gain constants sequence to stabilize the algorithm in
the neighborhood of the maximum likelihood estimate and
an off-line averaging method to achieve the optimal conver-
gence rate.

The main procedure is implemented as follows.

Stage I. Iterate Steps 1 and 2 with i = 1, . . . , K1 and the gain
constants are defined by

γi = γ1i = b1/(i a1 + b1 − 1), i = 1, . . . , K1,
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where K1 ≥ K0 is determined by

K1 = inf
{

K ≥ K0 : �
(1)
i

=
∥∥∥∥∥∥

K∑

i=K−K0+1

Sign(ξ i − ξ i−1)/K0

∥∥∥∥∥∥
≤ η1

⎫
⎬

⎭ . (18)

Function Sign(z) is a vector of 1, 0, or −1 according
to whether each component of z is positive, zero, or
negative, respectively. Integers b1 and K0, real num-
ber a1 ∈ (0, 1), and η1 are pre-assigned constants. We
choose a1 to be close to 0.5 and b1 to be relatively
large (e.g., a1 = 0.3 and b1 = 5) to obtain large gain
constants. Also, we choose a relatively small value of
η1 and K0 (e.g., η1 = 0.1 and K0 = 100) to ensure that
the estimates ξ i s start to move around a certain point,
possibly the maximum likelihood estimate.

Stage II. Take the seven estimates in the last iteration of Stage
I as their initial values in Stage II. We iterate Steps 1 and
2 with i = 1, . . . , K2 and the gain constants are defined
by

γi = γ2i = b2/(i a2 + b2 − 1), i = 1, . . . , K2,

where integer b2 and a2 ∈ (1/2, 1] are preassigned. We
choose a2 close to 1 and a small integer for b2 (e.g.,
a2 = 0.8, b2 = 2) to obtain small gain constants and
to stabilize the algorithm. We use an off-line averag-
ing procedure at the same time. We set the initial es-

timates as ξ̃ 0 = ξ K1 , h̃
0 = hK1 , �̃

0
1 = �

K1
1 , �̃

0
2 = �

K1
2 ,

�̃
0
3 = �

K1
3 , S̃0

τ,1 = S̃K1
τ,1, S̃0

τ,2 = S̃K1
τ,2, and �̃

0
(t) = �K1 (t),

and then update eight estimates as follows:

ξ̃ i = ξ̃ i−1 + (ξ i − ξ̃ i−1)/ i,

h̃
i = h̃

i−1 + (hi − h̃
i−1

)/ i,

S̃i
τ,m ′ = S̃i−1

τ,m ′ + (Si
τ,m ′ − S̃i

τ,m ′ )/ i,

�̃
i
m = �̃

i−1
m + (�i

m − �̃
i−1
m )/ i, and

�̃
i
(t) = �̃

i−1
(t) + [�i (t) − �̃

i−1
(t)]/ i, (19)

where m = 1, 2, 3 and m ′ = 1, 2. Theoretically, this
off-line averaging procedure automatically leads to an
optimal convergence without estimating the informa-
tion matrix (Polyak, 1990; Polyak and Juditski, 1992).
The stopping rule of Stage II is defined by

K2 = inf
{
i : �

(2)
i ≤ η2

}
, (20)

where �
(2)
i = h̃

iT
[�̃

i
(1)]−1 h̃

i + tr{[�̃i
(1)]−1�̂}/ i, in

which �̂ denotes an estimate of �, the covariance

matrix of Monte Carlo error. A rough estimate of �

can be achieved by taking the sample covariance of
H (ξ k−1; bk, by,k). The value of η2 is usually taken to
be around 0.002 to ensure small values of sξ (ξ̂ ; yo)
as the convergence criterion of the SAEM algorithm
(Gu and Zhu, 2001). At the K2-th iteration, we use the
off-line average (ξ̃ K2 , �̃

K2 (1)) as our final estimate of
(ξ̂ ,−∂2

ξ log L(ξ̂ ; yo)).

3.4 Convergence of the SAEM algorithm

We first establish the convergence of an algorithm, which is
an approximation to the SAEM algorithm. Note that the max-
imum likelihood estimate ξ̂ , defined by (7), can be obtained
as a solution to

sξ (ξ̂ , yo) = H (ξ̂ ) = E[Sξ (ξ̂ ; b)| yo, ξ̂ ] = 0. (21)

Without loss of generality, we assume that ∂τ log C(τ )
and ∂2

τ log C(τ ) can be evaluated analytically so that we
can omit the step of sampling from the MRF (3). We
also define Gt (ξ, b) = Iξξ (ξ, b) − t Sξ (ξ ; b)⊗2 and Gt (ξ ) =
E[Gt (ξ, b)| yo, ξ̂ ]. In principle, Step 2 of the SAEM algo-
rithm is equivalent to

{
ξ k = ξ k−1 + γk[�k(t)]−1 H (ξ k−1; by,k),

�k(t) = �k−1(t) + γk[Gt (ξ k, by,k) − �k−1(t)],
(22)

where H (ξ k−1; by,k) = ∑Nk
l=1 Sξ (ξ ; by,k,l)/Nk and Gt (ξ,

by,k) = ∑Nk
l=1 Gt (ξ ; by,k,l )/Nk . The basic iteration in (22)

can be further viewed as an approximation to

⎧
⎨

⎩
ξ

k = ξ
k−1 + γk[�

k
(t)]−1 H (ξ

k−1
),

�
k
(t) = �

k−1
(t) + γk[Gt (ξ

k−1
) − �

k−1
(t)],

(23)

where we use notation ξ
k

and �
k
(t) to represent the estimates

generated from (23). The algorithm in (22) can be convergent
only if (23) is convergent.

We establish the geometric convergence of (23) in Theo-
rem 1. A detailed proof is given in Zhu and Gu (2005). The
proof follows the general arguments for showing the conver-
gence of the Newton-Raphson algorithm (Stoer and Bulisch,
1980). Let ‖ · ‖ be a norm on Rq , the norm of a q × q ma-
trix A is defined as ‖A‖ = maxx:‖x‖=1 ‖Ax‖, where x =
(x1, . . . , xq )T is a vector. We assume that functions H (ξ )
and Gt (ξ ) are both differentiable on a convex set C0 ⊂ Rq .

Lemma 1. Assume that ξ̂ ∈ C0 is a root of H (ξ ) and {ξ :
‖ξ − ξ̂‖ ≤ ca} ⊂ C0 for some ca. Suppose that the sequence

{ξ k
, k > 0} is defined by (23) with initial value ξ

0 ∈ C0.
Assume that
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(a) ‖∂ξ H (ξ )−∂ξ H (ξ ′)‖ ≤ cη‖ξ−ξ ′‖ for every ξ, ξ ′ ∈ C0;

(b) ‖ξ 0 − ξ̂‖ ≤ ca;

(c) ‖[�
k
(t)]−1‖ ≤ cb, for k = 0, 1, . . . ;

(d) ‖Iq − B‖ ≤ 1 − λ, where Iq is a q × q identity matrix,

1 > λ ≥ 0 and B = −[�
k
(t)]−1∂ξ H (ξ̂ );

(e) δ = λ − cacbcη > 0.

Then for each k ≥ 0,

‖ξ k − ξ̂‖ ≤ exp{−δTk}‖ξ 0 − ξ̂‖, (24)

where T0 = 0 and Tk = ∑k
i=1 γi .

Theorem 1 (Geometric convergence of the algorithm (23)).

Suppose that ξ
0 ∈ C0 and �

0
(t) is a positive definite matrix

and that {γk, k ≥ 1} is a sequence of positive numbers such

that γk ≤ 1. For sequence {ξ k
,�

k
(t), k ≥ 0} as defined

in (23) with initial values ξ
0

and �
0
(t), assume that

Assumption (a) to (c) in Lemma 1 are valid. Further assume
that

(f) ‖Gt (ξ ) − Gt (ξ ′)‖ ≤ cd‖ξ − ξ ′‖ for every ξ, ξ ′ ∈ C0;
(g) ‖Gt (ξ )−1‖ ≤ cb for all ξ ∈ C0;
(h) ‖G−1

t (ξ )[Gt (ξ ) + ∂ξ H (ξ )]‖ ≤ 1 − λ for all ξ ∈ C0,
where 1 ≥ λ > 0;

(i) ‖Gt (ξ̂ ) − �
0
(t)‖ ≤ cacd ;

(j) δ′ = 1 − cacbcd + (1 − λ)(1 − cacbcd )−1 > 0.
Then for each k ≥ 0,

‖ξ k − ξ̂‖ ≤ exp{−δ′Tk}‖ξ 0 − ξ̂‖, (25)

and if Tk ≥ 3, then

‖�k
(t) − Gt (ξ̂ )‖ ≤ exp{−δ′Tk/2}[‖Gt (ξ̂ )

−�
0
(t)‖ + 2cd‖ξ̂ − ξ

0‖]. (26)

Theorem 1 generalizes Ostrowski’s Theorem to establish
a geometric convergence of algorithm (23) (Ortega, 1990).
If γk = 1 for all k, then algorithm (23) reduces to a stan-
dard iterative method for solving sξ (ξ̂ , y0) = 0. Under al-
most the same conditions as in Theorem 1, Ostrowski’s The-
orem states that ξ̂ is a point of attraction. That is, there is an

open neighborhood C0 of ξ̂ such that whenever ξ
0 ∈ C0, the

iterations in algorithm (23) are well defined and the sequence

ξ
k

converges to ξ̂ (Ortega, 1990, p. 144–145). Theorem 1 for
algorithm (23) is more general because {γk : k ≥ 1} is a se-
quence of positive numbers satisfying γk ≤ 1.

Next, we provide a convergence theorem of the algo-
rithm (22). When the functions H (ξ ) and Gt (ξ ) cannot be
explicitly calculated, we may substitute them with Monte
Carlo estimates, which results to the algorithm given by

(22). We follow the ordinary differential equation (ODE)
method (see Chapter 2 of Benveniste et al., 1990). Sup-
pose that we have a vector function ξ (v) and a matrix
function �(v), v ≥ 0, satisfying the ordinary differential
equations

dξ (v)

dv
= �(v)−1 H (ξ (v)),

d�(v)

dv
= Gt (ξ (v)) − �(v),

(27)

with the initial condition ξ (0) = ξ 0 and �(0) = �0. It is
shown in Benveniste et al. (1990) that the function ξ (v) is
closely related to the estimates ξ k produced by (22) with the
same initial vector. It is easy to see that (ξ̂ , Gt (ξ̂ )) is a stability
point of the above differential equation and all eigenvalues
of Gt (ξ̂ )−1∂ξ H (ξ̂ ) have negative real parts. A set D is called
a domain of attraction of a stability point (ξ̂ , Gt (ξ̂ )) if the
solution of (27) with (ξ (0),�(0)) ∈ D remains indefinitely
in D and converges to (ξ̂ , Gt (ξ̂ )). Theorem 1 guarantees the
existence of such a set D.

Assume that the transition probability �(·, ·|ξ ) satisfies
the conditions (C.3)−(C.6) given in Gu and Kong (1998). We
assume that (C.7) holds for the functions Sξ (ξ ; b), Sξ (ξ ; b)⊗2,
and Iξξ (ξ ; b). Under these conditions, the results considered
in Gu and Kong (1998) hold in our case. Therefore, we have
the following theorem.

Theorem 2. Assume that the conditions (C.1)–(C.7) in Gu
and Kong (1998) are valid. If {(ξ k,�k(t)), k ≥ 1} from the
SAEM algorithm (22) is a bounded sequence and visits in-
finitely often a compact subset of the domain of attraction
of the stability point (ξ̂ , Gt (ξ̂ )) of the differential Eq. (27)
almost surely, then

ξ k → ξ̂ and �k(t) → Gt (ξ̂ ) almost surely.

4 Examples

We used one simulation study and two real datasets to illus-
trate the performance of the SAEM algorithm. All compu-
tations were done in C on a SUN HPC4500 workstation. In
all examples, the convergence criterion in (18) and (20) was
used in Stages I and II, respectively, and (K0, η1, η2) was set
at (100, 0.1, 0.001).

4.1 State space model

State space models have received much consideration from
both classical and Bayesian perspectives; see Durbin and
Koopman (1997, 2000) and references therein. One special

Springer



170 Stat Comput (2007) 17:163–177

state space model considered in Durbin and Koopman
(2000) assumes that the latent process {b(s)} satisfies
b(s) = u(s)b(s − 1) + r(s)ε(s), where ε(s) ∼ p(·|τ ) and
both u(s) and r(s) may depend on unknown parameters.
Given {b(s)}, the observations y(s) are conditionally
independent and follow the distribution (1) with µ(s) =
x(s)T β + b(s). Although the maximum likelihood estimate
has good theoretical properties (Ledet and Petersen, 1999),
the log-likelihood function of this model does not have a
simple closed form and so the maximum likelihood estimate
is usually intractable (Chan and Ledolter, 1995; Durbin and
Koopman, 2000). We apply the SAEM algorithm for finding
the maximum likelihood estimate of the state space model.

The Polio Incidence data reported in Zeger (1988) gave
the monthly number of cases of poliomyelitis from January
1970-December 1983. This data is seasonal. Following Chan
and Ledolter (1995), we model the dataset by

y(s)|b(s) ∼ Possion(µ(s)), log µ(s) = x(s)T β + b(s),

and b(s) = ρb(s − 1) + ε(s) for s = 1, . . . , 168, where
ε ∼ N (0, exp(σε)) and x(s) is given by (1, s/1000,

cos(2πs/12), sin(2πs/12), cos(2πs/6), sin(2πs/6))T .
To sample b = {b(s)} conditional on yo = { y(s)}, we used

the random-walk Metropolis algorithm to sample from the
full conditional densities p(b(s)|all other b(t), yo) (Chan and
Ledolter, 1995; Eq. (9)) as follows. At the r th iteration of the
Metropolis algorithm with a current value b(s)(r ), a new can-
didate b(s)∗ is generated from N [b(s)(r ), σ 2] and the proba-
bility of accepting this new candidate is

min

{
1,

p(b(s)∗|all other b(t), yo)

p(b(s)(r )|all other b(t), yo)

}
.

The σ 2 is chosen to be 1.0 so that the average acceptance
rate is approximately 0.44.

We applied the SAEM algorithm with (a1, b1; a2, b2) =
(0.2, 4; 0.8, 2) and Nk = 40 to find the maximum likelihood
estimate. The initial value for ξ = (β, ρ, σε) was set to be

ξ 0 = 0. Figure 1(a) gives the plot of �
(2)
i in Stage II of

the SAEM algorithm with t = 0, and Fig. 1(b) shows the
estimates (βk

1 , β̃k
1 ) and (ρk, ρ̃k) at each iteration of the SAEM

algorithm with t = 0. Figure 1(a) shows that the SAEM
algorithm converges very quickly. Figure 1(b) shows that
a large gain constants sequence in Stage I can force the
estimates into a small neighborhood of ξ̂ , with all parameters
oscillating around the maximum likelihood estimate after the
200-th iteration. Because the SAEM algorithm with t = 1
shows similar behavior, we omit it.

To make a comparison, we ran the Monte Carlo EM algo-
rithm with γk = 1 and Nk = 2k2 + 40 for 100 iterations and
also included the maximum likelihood estimate in Table 1
(Chan and Ledolter, 1995; Wei and Tanner, 1990; Zhang,
2002). The initial value for ξ = (β, ρ, σε) was set to be
ξ 0 = 0. Figure 1(c) shows the relative change between con-
secutive estimates �k = ‖ξ k − ξ k−1‖/8, which is a common
stopping criterion for the Monte Carlo EM algorithm. It also
shows that with increasing Nk , all �k still oscillate around
zero and do not show clear convergence. The Monte Carlo
EM algorithm also converges to the maximum likelihood
estimate; however, the Monte Carlo EM algorithm requires
more computational time. Figure 1(d) presents the three el-
ements of ξ k at each iteration of the Monte Carlo EM al-
gorithm. All those estimates oscillate around the maximum
likelihood estimate even for a large Nk .

The maximum likelihood estimates obtained from the
SAEM and Monte Carlo EM algorithms are included in Ta-
ble 1. We observed that the maximum likelihood estimates
obtained from all algorithms are close to each other; however,
the SAEM algorithm with t = 0 apparently outperforms that
with t = 1 in terms of computer time and the number of
iterations.

4.2 Noisy Ising model

The Ising model is a well-known MRF with a binary random
variable b(i, j) ∈ {0, 1} at each site (i, j) on a regular

Table 1 Model fits to polio incidence data

Iter/time β1 β2 β3 β4 β5 β6 ρ σε

SAEM with t = 0
1923 EST 0.228 −3.717 0.166 −0.483 0.412 −0.011 0.650 −1.267
350s SE 0.125 1.346 0.090 0.115 0.101 0.098 0.060 0.110

SAEM with t = 1
2470 EST 0.241 −3.786 0.163 −0.482 0.414 −0.011 0.639 −1.238
532s SE 0.126 1.347 0.090 0.116 0.105 0.101 0.058 0.111

Monte Carlo EM algorithm
100 EST 0.242 −3.787 0.162 −0.479 0.414 −0.010 0.649 −1.270
3392s SE 0.125 1.346 0.090 0.115 0.101 0.098 0.059 0.110

Iter denotes the number of iterations; EST denotes the estimates; SE denotes the standard errors of estimates.
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Fig. 1 Polio Incidence data: (a) �
(2)
k at each iteration of Stage II of the

SAEM algorithm with t = 0; (b) (βk
1 , ρk ) (red lines) and (β̃k

1 , ρ̃k ) (blue
lines) at each iteration of the SAEM algorithm with t = 0; (c) �k at

each iteration of the Monte Carlo EM algorithm; (d) βk
1 (red line), βk

5
(blue line), and βk

6 (green line) at each iteration of the Monte Carlo EM
algorithm

M0 × N0 lattice Z2
M0,N0

. The two-dimensional Ising model
without external field term can be written as

p(b|θ ) ∝ exp

{
τ
∑

nn

δ(b(i, j), b(u, v))

}
, (28)

where nn means that the summation is over all the pairs of
first-order neighboring points on the plane (Besag, 1974).
The potential function is −τ

∑
nn δ(b(i, j), b(u, v)) and the

normalizing factor C(τ ) is obtained by summing over all
possible configurations b. Because the parameter τ > 0 mea-
sures the degree of homogeneity in neighborhood sites,
this distribution invites clustering of like-valued pixels. We
consider a noisy version of the true scene as our data
{ y(i, j) : (i, j) ∈ Z2

M0,N0
} with

y(i, j) = b(i, j) + ε(i, j), (29)

where errors ε(i, j) are identically and independently
distributed as Gaussian noise with mean zero and variance
exp(σ ).

To evaluate the usefulness of the proposed algorithm, we
consider the following simulation study for the noisy Ising
model. In this simulation study, the Ising model is set on
a 30 × 30 square lattice on the plane. The periodic bound-
ary for the square lattice is assumed. Swendsen and Wang’s
(1987) algorithm was used to simulate the process {b(i, j) :
i, j = 1, . . . , 30}. This algorithm uses auxiliary bond vari-
ables and is designed to speed up simulations with very large
Ising models (Hidgon, 1998). The key idea of Swendsen and
Wang’s (1987) algorithm is summarized as follows: Let u =
{u((i, j), (u, v)) : (i, j) ∼ (u, v)} be a set of auxiliary vari-
ables, the joint distribution p(u, b) has the distribution (28)
as the marginal distribution for b and p(u|b) and p(b|u) are
easy to sample from. Following Hidgon (1998), we choose

p(u, b) ∝ I (0≤u((i, j), (u, v))≤exp(τδ(b(i, j), b(u, v)))),

where I (·) is an indicator function. A Gibbs sampler is
then used to sample iteratively from p(u|b) and p(b|u).
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The initial state of the process is taken at random such
that b(i, j) is independently {0, 1} with equal probability.
Swendsen and Wang’s (1987) algorithm was repeated 4000
times to ensure that the equilibrium states were achieved
and Gaussian noise with mean zero and variance exp(−0.5)
was added to produce a “noisy” dataset.

We simulated 500 datasets for each parameter value
τ0 ∈ {0.2, 0.4, 0.6, 0.8}. Based on the simulated datasets,
we applied the SAEM algorithm with t = 0 as described
in Section 3 to obtain the maximum likelihood estimate of
ξ = (τ, σ ). The starting value of ξ 0 was taken to be (0.1, 0.0).
The SAEM algorithm with (a1, b1; a2, b2) = (0.4, 5; 0.8, 2)
converged quickly. In order to estimate ∂τ log C(τ ) and
∂2
τ log C(τ ), the Metropolis algorithm (Gu and Zhu, 2001)

was applied at each site (i, j) to generate b from (28) in each
iteration of the SAEM algorithm.

To simulate the random sample from b conditional on yo,
we used the following Metropolis algorithm. Let the current
value of the process at site (l, j) be b(l, j) and the current
value of the potential function be U . Take the alternative
value b(l, j)∗ at the site (l, j), which leads to the value of the
potential function U ∗, the probability of accepting this new
candidate b(l, j)∗ and U ∗ is

min{1, exp{(U − U ∗) + 0.5[ y(l, j) − b(l, j)]2

× exp(−σ ) − 0.5[ y(l, j) − b(l, j)∗]2 exp(−σ )}}.
Moreover, each site was selected at random with

1/(30 × 30) probability not according to the lexicographical
order. For example, if site (1,1) was selected, we ran the
above mentioned Metropolis procedure at the site (1,1)
with other sites unchanged. Thus, only the value at one
site can change from bk,i−1 to bk,i . The number Nk was set
at Nk = 20000. Compared with the total number of sites
30 × 30 = 900, Nk = 20000 is not exceedingly large.

To illustrate the performance of the SAEM algorithm,
we calculated the bias, the mean of the standard deviation
estimates, and the root mean-square error obtained from the
500 estimates. We also obtained the mean of the number of
iterations for each estimate and the average CPU time for
each estimate. The results are summarized in Table 2. The

performance of the SAEM algorithm was very good, with
all relative efficiencies (the ratio of the mean of the standard
deviation estimates and the root mean-square error) close to
1.0. The computational time decreased with the values of β

(the higher β, the stronger spatial aggregation). In addition,
according to our experience (not presented here), the SAEM
algorithm could converge very slow when −σ is extremely
high (e.g., σ = −1.4).

4.3 Segmentation of brain magnetic resonance images

Magnetic resonance imaging (MRI) of the brain provides
detailed information about brain tissues (i.e., White Matter
(WM), Gey Matter (GM), or Cerebro Spinal Fluid (CSF)).
Such information is central for quantitative studies of certain
illnesses, pre- and intra- operative guidance for therapeutic
intervention, and advanced morphometric techniques for re-
search, among other uses. Developing methods for assigning
each voxel of MRI to a specific tissue have been an active
field. See, for example, Zhang et al. (2001), Rajapakse et
al. (1997), and Marroquin et al. (2003), among many others.
Statistical models, including spatial random effects model
(6), have been used to account for noise inherent in the sig-
nal intensities of MRI and accurately assigning tissues to
voxels in MRIs.

To demonstrate the application of spatial random effects
model (6) in image segmentation, we used a single slice of
a MRI volume, which was generated by using the Brainweb
MRI simulator (Kwan et al., 1999). The image grid on the
slice is 181×181 and the in-plane spatial resolution is 1 × 1
mm. For simplicity, only two major tissues (WM and GM)
on the slice were considered here. The “anatomical model”
in Fig. 2(a) shows true tissue identity (WM or GM) in each
voxel of the slice; 5904 voxels contain WM and 6083 voxels
contain GM. Figure 2(a) shows that the same tissues cluster
together with GM encircling WM. The simulated MRI
slices with the 0% and 12% noise levels are, respectively,
shown in Fig. 2(b) and (c). Mechanism for simulating MRI
data and adding physical noise has been reported in Kwan
et al. (1999).

Table 2 Bias, RMS, SD, and EFF of the maximum likelihood estimates of the noisy Ising model

β σ = −0.5

True Bias RMS SD EFF Bias RMS SD EFF AVEN AVET

0.20 0.005 0.138 0.143 0.968 0.006 0.063 0.063 0.995 2130 720s
0.40 0.008 0.111 0.117 0.946 0.004 0.062 0.064 0.968 1767 605s
0.60 0.014 0.077 0.084 0.915 0.007 0.061 0.059 1.035 1325 480s
0.80 0.010 0.041 0.043 0.961 0.006 0.058 0.057 1.043 1429 498s

True denotes the true value of parameters; Bias denotes the bias of the mean of estimates; RMS denotes the root-mean-square error; SD
denotes the mean of standard deviation estimates; AVEN denotes the average of the number of iterations for each estimate; AVET denotes
the mean CPU time; and EFF denotes the ratio of SD and RMS.
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Fig. 2 Segmentation of MRI data: an anatomical model giving true
identity (White Matter (colored red) or Grey Matter (colored white))
in each voxel of the MRI slice (a); the simulated MRI slice with the
0 percent noise (b, d, and f); and the simulated MRI slice with the 12
percent noise (c, e, and g). For the MRI slice with 0 percent noise, we
show the raw data in (b), the estimated anatomical model from mixture

model in (d), and the estimated anatomical model from spatial random
effects model and by using ICM in (f). For the MRI slice with 12 per-
cent noise, we show the raw data in (c), the estimated anatomical model
from mixture model in (e), and the estimated anatomical model from
spatial random effects model and by using ICM in (g)

Given the ground truth in Fig. 2(a), we performed some
preliminary analyses on the MRI slice with different noise
levels. For the slice with the 0% noise level, we calculated the
mean and standard deviation of image intensities for WM as
(702.462, 31.335), and those for GM as (530.245, 51.133).
However, for the slice with the 12% noise level, the mean and
standard deviation of image intensities for WM and GM are,
respectively, (809.397, 173.675) and (612.819, 171.809).

We used a mixture normal model to cluster two tissues
(GM and WM) on the two simulated MRI slices. The signal
intensity y(si ) at each voxel si can be written as

y(si ) =
2∑

k=1

[β(k) + εk(si )]δ(b(si ), k), (30)

where β(1) and β(2) denote, respectively, the mean sig-
nal intensities of WM and GM, εk(si ) follows the nor-
mal distribution with zero mean and variance exp(σk)
for k = 1 and 2, and b(si ) = 1 (or 2) represents un-
known tissue type WM (or GM). Furthermore, all b(si )
are binary variables and identically and independently dis-
tributed. In addition, P(b(si ) = 1) = 1/[1 + exp(τ1(2))] and
P(b(si ) = 2) = exp(τ1(2))/[1 + exp(τ1(2))]. The unknown
parameter vector ξ for the mixture model is given by
ξ = (β(1), σ1, β(2), σ2, τ1(2))T . Given the maximum likeli-
hood estimate ξ̂ , we can obtain an estimate of the conditional
probability P(b(si ) = 1|ξ̂ ) at each si as follow:

φ( y(si ); β̂(1), σ̂1)

φ( y(si ); β̂(1), σ̂1) + φ( y(si ); β̂(2), σ̂2) exp(τ̂1(2))
,
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where φ( y(si ); β, σ ) = exp(−0.5σ − 0.5( y(si ) − β)2/ exp
(σ )). Then, we can compute the sum of the correct prediction
(SCP) as follow:

SCP =
n∑

i=1

δ
(
b(si )

true, b(si )
pred
)

(31)

where n = 11987, b(si )true denotes the true b(si ), and
b(si )pred equals 1 when P(b(si ) = 1|ξ̂ ) > 0.5 and 2 other-
wise.

For the MRI slice with the 0% noise level, we ap-
plied the expectation-maximization algorithm to find ξ̂ =
(713.068, 5.983, 548.409, 8.355, 0.385)T with SCP = 906.
For the MRI slice with the 12% noise level, ξ̂ is (808.591,

10.358, 604.351, 10.183,−0.062)T with SCP = 3371. We
present bpred for both MRI slices in Fig. 2(d) and (e). As
expected, higher levels of noise leads to larger SCPs. More-
over, for data with high levels of noise, the mixture model
cannot recover the cohesion of the same tissues.

We applied model (6) to cluster two tissues (WM and GM)
on the MRI slices with differing noise levels, and we calcu-
lated ξ̂ by using the SAEM algorithm. Because S in Fig. 2(a)
is an irregular lattice, we consider the joint distribution of
the site responses b = {b(si ) : si ∈ S} conditional upon re-
sponses bO = {b(si ) : si ∈ SO}, where SO and S denote the
set of all sites forming the outside of S and the set of all sites
of S, respectively. Furthermore, we assume that all b(si ) for
si ∈ SO equal 2, which requires that the tissues close to the
boundary are GM, although we only use information from
the voxels near the boundary of S. We assume model (31),
but the joint distribution of the latent field b given bO can be
written as

exp

{
τ1(2)

n∑

i=1

δ(b(si ), 2) + τ2

∑

si ∼s j

δ(b(si ), b(s j ))

− log C(τ1(2), τ2)

}
, (32)

where the first-order neighboring correlation is used (Huffer
and Wu, 1998). The unknown parameter vector ξ is (β1,

σ1, β2, σ2, τ1(2), τ2)T .
To estimate ∂τ log C(τ ) and ∂2

τ log C(τ ), we applied the
Metropolis algorithm at each site si to generate b from (32) in
each iteration of the proposed algorithm (Gu and Zhu, 2001).
To simulate the random sample from b conditional on yo and
bO , the following Metropolis algorithm was used. We call it
Sampling Method (I). Let the current value of the process at
site si be b(si ) and the current value of the potential function
is denoted as U . Take the alternative value b(si )∗ at the site
si which leads to the value of the potential function U ∗, the
probability of accepting this new candidate b(si )∗ and U ∗ is

min{1, exp{(U − U ∗) + 0.5[y(si ) − β(k)]2e−σk

−0.5[y(si ) − β(m)]2e−σm + 0.5[σk − σm]}},

where b(si ) = k and b(s∗
i ) = m. Moreover, each site was

selected at random with 1/n = 1/11987 probability. The
number Nk was set at Nk = 60, 000, which is about five
times the number of sites in S.

For the two simulated MRI slices with differing noise lev-
els, we applied the SAEM algorithm with (a1, b1; a2, b2) =
(0.2, 5; 0.8, 2) and t = 0 to find the maximum likeli-
hood estimate of spatial random effects model (6). For
the MRI slice with the 0% noise level, ξ 0 was set at
(713.07, 5.98, 548.41, 8.36, 0.39, 0.0, 1.0)T and the SAEM
algorithm took 4032 iterations to obtain

ξ̂ T = (710.78, 6.18, 541.70, 8.17,−3.62, 1.84)

with standard errors (0.84, 0.02, 0.39, 0.03, 0.02, 0.01).
Given the maximum likelihood estimate ξ̂ , we applied
the iterated conditional modes (ICM) to obtain an es-
timate of bpred and the value of SCP as 695. Recall
that SCP = 906 based on the mixture model. We present
bpred in Fig. 2(f). For the MRI slice with the 12%
noise level, the SAEM algorithm starts from initial value
ξ 0 = (713.07, 5.98, 548.41, 8.36, 0.39, 0.0, 1.0)T and con-
verges to ξ̂ T = (823.79, 10.19, 582.06, 10.04,−3.50, 1.77)
with standard errors (2.89, 0.02, 2.90, 0.02, 0.01, 0.01) in
2393 iterations. We then applied ICM to estimate bpred;
see Fig. 2(g). Moreover, the value of SCP = 1463 is much
smaller than SCP = 3371 based on the mixture model de-
scribed above. It reveals that introducing spatial correlation
truly improves performance of the segregation methods.

For illustration, we present the performance of the SAEM
algorithm for the MRI slice with the 12% noise level in
Fig. 3. Figure 3(a) gives �

(1)
i and �

(2)
i at each iteration of

each stage of the SAEM algorithm with t = 0. It indicates
that all parameters oscillate around the maximum likelihood
estimate from the 600th iteration. Furthermore, starting from
ξ 0, the estimates (β(1)k, β(2)k), (τ1(2)k, τ k

2 ), and (σ k
1 , σ k

2 )
at each iteration are shown in Fig. 3(b)–(d), respectively.
A large gain constants sequence in Stage I can force the
estimates into a small neighborhood of ξ̂ and all estimates
start to oscillate in Stage II.

5 Discussion

We have introduced a class of spatial random effects models
and provided the SAEM algorithm to calculate the maximum
likelihood estimate of these spatial random effects models.
Many issues, however, merit further research. For instance,
the SAEM algorithm could be applied to problems of missing
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Fig. 3 Segmentation of MRI data: (a) �
(1)
k (blue line) and �

(2)
k (red

line) at each iteration of Stages I and II of the SAEM algorithm; (b) βk
1

(red line) and βk
2 (blue line) at each iteration; (c) τ1(2)k (red line) and

τ k
2 (blue line) at each iteration; (d) σ k

1 (red line) and σ k
2 (blue line) at

each iteration

data, such as those found in generalized linear mixed mea-
surement error models (Wang et al., 1998), parametric re-
gression models with missing covariates (Horton and Laird,
1998), and generalized nonparametric mixed effects models
(Karcher and Wang, 2001). The SAEM algorithm should
provide an efficient algorithm for finding the maximum like-
lihood estimate of those models for missing data. Pairwise
interaction Markov Random Fields are another widely used
class of distributions in spatial statistics (Besag et al., 1995);
spatial random effects models, however, exclude this model,
because we assume that the sites of latent process of b are pre-
determined and non-random. Future work applying SAEM
algorithms to the pairwise interaction MRFs will need to
develop an efficient algorithm for sampling from the latent
process. Further research should also calculate Bayesian esti-
mates of spatial random effects models. Here, sampling from

the distribution of parameters associated with the normaliz-
ing factor of MRFs will be the primary difficulty (Liu, 2001).
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