
COMPUTATION OF THE EMPIRICAL LIKELIHOOD RATIO FROM
CENSORED DATA

Kun Chen and Mai Zhou 1

Bayer Pharmaceuticals and University of Kentucky

Summary

The empirical likelihood ratio method is a general nonparametric inference procedure
that has many desirable properties. Recently, the procedure has been generalized to
several settings including testing of weighted means with right censored data. However,
the computation of the empirical likelihood ratio with censored data and other complex
settings is often non-trivial. We propose to use a sequential quadratic programming
(SQP) method to solve the computational problem. We introduce several auxiliary vari-
ables so that the computation of SQP is greatly simplified. Examples of the computation
with null hypothesis concerning the weighted mean are presented for right and interval
censored data.
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1. Introduction

The empirical likelihood ratio method was first proposed by Thomas and Grunkemeier

(1975). Owen (1988, 1990, 1991) and many others developed this into a general methodol-

ogy. It has many desirable statistical properties, see Owen’s recent book (2001). A crucial step

in computing the empirical likelihood ratio, i.e. the Wilks statistic, is to find the maximum of

the log empirical likelihood (LEL) function under some constraints. The Wilks statistic is just

two times the difference of two such LEL functions maximized under different constraints. In

all the papers mentioned above, this is achieved by using the Lagrange multiplier method. It

reduces the maximization of empirical likelihood over n− 1 variables to solving a set of r equa-

tions, f(λ) = 0, for the r-dimensional multiplier λ. The number r is fixed as the sample size n

grows. Furthermore, the functions f are monotone in each of the r coordinates. These equations

can easily be solved numerically and thus the empirical likelihood ratio can be obtained.

Recently, the empirical likelihood ratio method has been generalized to several more com-

plicated settings. For example, Pan and Zhou (1999) showed that for right censored data, the
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empirical likelihood ratio can also be used to test hypotheses about a weighted mean. Mur-

phy and Van der Vaart (1997) demonstrated, among other things, that Wilks’ theorem for the

empirical likelihood ratio also holds for doubly censored data.

However, computation of the censored data empirical likelihood ratio in these settings re-

mains difficult, as the Lagrange multiplier simplification is not available (see example 1). Unlike

the Owen (1988) paper, the proofs of Wilks’ theorem for the censored empirical likelihood ratio

contained in Pan and Zhou (1999) and Murphy and van der Vaart (1997) do not offer a viable

computational method. They provide existence proofs rather than constructive proofs. There-

fore, a study of computational methods that can find the relevant empirical likelihood ratios

numerically when analyzing censored data is needed.

Example 1 Suppose i.i.d. observations X1, · · · , Xn with an unknown CDF FX(t) are subject

to right censoring so that we only observe

Zi = min(Xi, Ci) ; δi = I[Xi≤Ci], i = 1, 2, . . . , n; (1)

where C1, · · · , Cn are censoring times, assumed independent of X1, · · · , Xn.

The log empirical likelihood (LEL) function based on the censored observations (Zi, δi) is

LEL(w) =
n∑

i=1

δi log wi + (1− δi) log

 ∑
Zj>Zi

wj

 , (2)

where wi = FX(Zi)− FX(Zi−).

The empirical likelihood ratio test is based on Wilks’ statistic

−2 log R(H0) = −2 log
maxH0 EL(w)

maxH0+H1 EL(w)

= 2
[
log( max

H0+H1

EL(w))− log(max
H0

EL(w))
]

= 2 [log(L(w̃))− log(L(ŵ))] = 2 [LEL(w̃)− LEL(ŵ)] .

Here, w̃ is the nonparametric maximum likelihood estimate (NPMLE) of probabilities without

any constraint, ŵ is the NPMLE of probabilities under the H0 constraint.

To compute Wilks’ statistic for testing a hypothesis about a weighted mean of X, we need

to find the maximum of the above LEL under the constraints

n∑
i=1

wiZiδi = µ ,
n∑

i=1

wiδi = 1 , wi ≥ 0 ;
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where µ is a given constant, specified by the null hypothesis. While the asymptotic null dis-

tribution of the test statistic can be shown to be a chi- squared with 1 degree of freedom; a

straight application of the Lagrange multiplier method does not lead to a simple solution. The

same difficulty arises also with doubly censored data and other censoring cases. Thus a viable

computation algorithm for the maximization of the empirical likelihood ratio is needed.

We propose to use the sequential quadratic programming (SQP) method to find the con-

strained maximum. In particular, we show how one can introduce several auxiliary variables so

that the computation of SQP for censored empirical likelihood is greatly simplified. In fact, this

trick can be used to compute empirical likelihood ratios in many other cases (for example, doubly

or interval censored data) where a simple Lagrange multiplier computation is not available.

We briefly review the SQP method in section 2. We show how to use the SQP method to

compute the maximum of the LEL function in section 3. Examples and simulations are given

in section 4.

2. The Sequential Quadratic Programming Method

There is a large amount of literature on nonlinear programming methods, see for example

Nocedal and Wright (1999) and references there. The general strictly convex (positive definite)

quadratic programming problem is to minimize

f(x) = −aTx +
1
2
xTGx , (3)

subject to

s(x) = CTx− b ≥ 0 , (4)

where x and a are n-vectors, G is an n×n symmetric positive definite matrix, C is an n×m (m <

n) matrix, b is an m-vector, and a superscript T denotes the transpose. In this paper, the vector

x is only subject to equality constraints CTx − b = 0. This makes the QP problem easier. In

the next section we shall show how to introduce a few new variables in the maximization of

the censored LEL (2) so that the matrix G is always diagonal, which further simplifies the

computation. Therefore, instead of using a general QP algorithm, we have implemented our

own version in R which takes advantage of the mentioned simplifications. The specific QP

problem can be solved by performing one matrix QR decomposition, one backward solve, and

one forward solve of equations.
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Since all our constraints are equality constraints, one way to solve the minimization problem

(3) is to use (yet again) the Lagrange multiplier:

min
x,η

− aTx +
1
2
xTGx− ηT [CTx− b]

where η is a column vector of length m. Taking the derivative with respect to x and setting it

equal to zero, we get Gx− a−Cη = 0 . We can solve x in terms of η to get

x = G−1[a + Cη] . (5)

Since the matrix G is diagonal, the inverse G−1 is easy to obtain. Finally, we need to solve for

η. Substituting (5) into CTx = b, we get CT (G−1[a + Cη]) = b, which is, upon rewriting,

CTG−1Cη = b−CTG−1a . (6)

Once we get the solution η from (6) we can substitute it back into (5) above to calculate x.

One way to solve (6) is to use QR decomposition. If CTG−1/2 = RQ then (6) can be

rewritten as

(RQQTRT )η = b−RQG−1/2a

(RRT )η = b−RQG−1/2a

RT η = R−1b−QG−1/2a (7)

Equation (7) can be solved by using back-substitution (twice) and one matrix-vector multipli-

cation, which are numerically low cost operations.

We are interested in maximizing LEL, or minimizing the negative LEL over all possible

probabilities. This is a nonlinear programming problem. Since it is hard to find a minimum of

the negative LEL directly in many cases, and the negative LEL is often convex at least near the

minimum, we use a quadratic function to approximate it. Starting from an initial probability

w0, we replace the nonlinear target function (negative LEL) with a quadratic function that has

the same first and second derivatives at w0. The QP method is used to find the minimum of

the quadratic function subject to the same constraints. Denote the location of the minimum by

w1. Then, we update the quadratic approximation which now has the same first and second

derivatives as the negative LEL at w1. The QP method is used again to find the minimum

of the new quadratic function under the same constraints. Iteration ends when a predefined

convergence criterion is satisfied. The convergence criterion can be based on the values of the
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negative LEL, which should decrease at each iteration. When the value of the negative LEL no

longer decreases, we stop the iteration.

One way to improve convergence and guarantee that the negative LEL decreases at each

iteration is the technique of damping: write the updated value of the solution as x(s) = x(s−1)+x,

we shall only accept x(s) if it decreases the negative LEL, otherwise we shall search along the

line x(s)
ξ = x(s−1) + ξx for 0 ≤ ξ < 1 until it decreases the negative LEL value.

When the information matrix (of the LEL) is positive, the quadratic approximation is good

at least in a neighborhood of the true MLE. Thus, in case of convergence, the solution gives the

correct MLE under the given constraints.

3. Empirical Likelihood Maximization with Right Censored Data

We now describe the SQP method that solves the problem in Example 1. The implementa-

tions for doubly censored data and interval censored data are similar. We only give the details

for right censored data here.

For right-censored data as in (1), the LEL is given in (2). It is well known that the maximizer

of the LEL has the following property: wi > 0 only when the corresponding δi = 1. We shall

restrict the search of a maximizer for the LEL under the mean constraint to those wi’s. See

Owen (1988) p. 238 for a discussion on this type of restriction.

We describe below two ways to implement the SQP method for finding the constrained MLE.

The first implementation of QP would simply take the w in (2) as x. The knowledge of

wi = 0 when δi = 0 helps to reduce the number of variables to k (number of uncensored data).

The length of the vector a is k and the matrix G is k × k. The second derivative matrix G in

the quadratic approximation is dense and the computation of the inverse/QR decomposition is

very expensive numerically.

A second and better way to use the SQP with censored data will introduce some auxiliary

variables Rl = P (Z ≥ Zl), one for each censored observation, this enlarges the dimension of the

vectors (a, x, b) and the matrices (G, C) in (3) and (4), but simplifies the matrix G. In fact,

G will be diagonal, so that we can directly plug in the inverse of the decomposition matrix of

G. This speeds up the computation tremendously.

We illustrate the two methods for the problem described in Example 1. In method one,

since wi > 0 only when the corresponding δi = 1, we would separate the observations into two
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groups: Z1 < · · · < Zk for those with δ = 1 and Z∗
1 < · · · < Z∗

n−k for those with δ = 0. The first

derivative of the log empirical likelihood function is:

∂LEL(w)
∂wi

=
1
wi

+
n−k∑
l=1

I[Zi>Z∗
l
]∑

Zj>Z∗
l
,δj=1,1≤j≤k wj

,

Let us denote Ml =
∑

Zj>Z∗
l
,δj=1,1≤j≤k

wj , then the a vector in the QP problem (3) will be

a =

(
1
w1

+
n−k∑
l=1

I[Z1>Z∗
l
]

Ml
,

1
w2

+
n−k∑
l=1

I[Z2>Z∗
l
]

Ml
, · · · , 1

wk
+

n−k∑
l=1

I[Zk>Z∗
l
]

Ml

)T

.

Taking the second derivative with respect to wi, i = 1, 2, . . . , k, we have

∂2LEL(w)
(∂wi)2

= − 1
w2

i

−
n−k∑
l=1

I[Zi>Z∗
l
]

M2
l

,

and for i 6= q:
∂2LEL(w)

∂wi∂wq
= −

n−k∑
l=1

I[Zi>Z∗
l
]I[Zq>Z∗

l
]

M2
l

=
∂2LEL(w)

∂wq∂wi
,

and therefore the matrix G is given by the negative of those second derivatives.

Finally

x =


w1 − w?

1

w2 − w?
2

...
wk − w?

k

 , C =


1 Z1

1 Z2
...

...
1 Zk

 .

We always use an initial value w0 that is a probability, but it may not satisfy the mean con-

straint. Therefore b0 = (0, µ − Z̄), where Z̄ =
∑

w0iZi. For subsequent iterations we have

b = (0, 0) since the current value of w already satisfies both constraints.

In the second and better SQP implementation, we introduce new variables

Rl = R(Zl) =
∑

Zj>Zl,δj=1,1≤j≤k

wj ,

one for each right censored observation Zl. If we identify x in (3) as the vector (w,R), then the

log empirical likelihood function (2) becomes

L(x) = LEL(w,R) =
k∑

i=1,δi=1

log wi +
n−k∑

l=1,δl=0

log Rl .
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To find the quadratic approximation of L(x), we need to compute two derivatives. The first

derivatives with respect to (w,R) are

∂LEL(w,R)
∂wi

=
1
wi

, i = 1, 2, . . . , k,

∂LEL(w,R)
∂Rl

=
1
Rl

, l = 1, 2, . . . , n− k.

So the vector a (n× 1) in the quadratic programming problem (3) becomes much simpler with

entries either equal to
1
wi

or
1
Rl

, depending on the censoring status of the observation. The

second derivatives of L with respect to (w,R) are

∂2LEL(w,R)
(∂wi)2

= − 1
w2

i

,
∂2LEL(w,R)

(∂Rl)2
= − 1

R2
l

,
∂2LEL(w,R)

∂wi∂Rl
= 0 ,

i = 1, 2, . . . , k, l = 1, 2, . . . , n− k.

Therefore the matrix G (n×n) in the quadratic approximation (3) is diagonal. The ith diagonal

element of G is either
1

w2
i

or
1

R2
l

depending on whether this observation is censored or not.

Since G is a diagonal matrix, it is trivial to find the inverse of the decomposition matrix of G,

say H−1, such that HTH = G. H−1 is also a diagonal matrix with ith entries equal to wi or Rl

depending on the censoring status. Many QP solvers, including the one in R package quadprog,

can directly use H−1 to calculate the solution much faster. Now, because we introduced new

variables Rl, they bring (n− k) additional constraints, that is,

(1) : R1 =
∑

Zj>Z∗1 ,δj=1,1≤j≤k

wj ,

...

(n− k) : Rn−k =
∑

Zj>Z∗
n−k

,δj=1,1≤j≤k

wj .

These, plus the two original constraints (using the original Z1 < · · · < Zn)
n∑

i=1

wiδi = 1 ,
n∑

i=1

wiZiδi = µ ,

would make the constraint matrix C to be of size n× (n− k + 2). The first two columns of C

for the above two original constraints will be
δ1 δ1Z1

δ2 δ2Z2
...

...
δn δnZn

 .
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The rest of the columns depend on the positions of censored observations. If the observation

is censored, the entry is 1. All entries before this observation are 0. The entries after this

observation are −1 if uncensored, 0 if censored.

Example 2: For a concrete example of second QP implementation, suppose there are five

ordered observations Z = (1, 2, 3, 4, 5) and censoring indicators δ = (1, 0, 1, 0, 1). The weight

vector will be w = (w1, 0, w2, 0, w3) and the probability constraint is that
∑

wiδi = w1+w2+w3 =

1. Suppose that we want to test a null hypothesis
∑

wiZiδi = w1 + 3w2 + 5w3 = µ. We have

the log empirical likelihood function

LEL(w,R) = log w1 + log w2 + log w3 + log R1 + log R2 ,

where R1 = w2 + w3 and R2 = w3. In this case, the relevant vectors and matrices are:

a =


1/w?

1

1/R?
1

1/w?
2

1/R?
2

1/w?
3

 , G =



1
(w?

1)2
0 0 0 0

0
1

(R?
1)2

0 0 0

0 0
1

(w?
2)2

0 0

0 0 0
1

(R?
2)2

0

0 0 0 0
1

(w?
3)2


,

C =


1 1 0 0
0 0 1 0
1 3 −1 0
0 0 0 1
1 5 −1 −1

 , x =


w1 − w?

1

R1 −R?
1

w2 − w?
2

R2 −R?
2

w3 − w?
3

 ,

where w? and R? are the current values, and w and R will be the updated values after one QP.

The vector b0 will depend on the starting value w0. We always use a starting value w0 that

is a probability, but it may not satisfy the weighted mean constraint. After one QP iteration,

the new w will satisfy
∑

wiZiδi = µ and thus for subsequent QP the vector b should be zero.

Suppose we take w0 to be the discrete uniform probability, then

b0 =
(

0 , µ− Z̄ , 0 , 0
)

, b =
(

0 , 0 , 0 , 0
)

.

The decomposition of the matrix G is H, and we have:

H−1 =


w?

1 0 0 0 0
0 R?

1 0 0 0
0 0 w?

2 0 0
0 0 0 R?

2 0
0 0 0 0 w?

3

 .
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Remark 2. To compare the two methods, we generated a random sample of size n = 100,

where X from N(1, 1), C from N(1.5, 2). On the same computer, the first method took about

25− 30 minutes to find the maximum of the likelihood, however, the second method only took

1 − 2 seconds. The difference is remarkable. The computation took about 5 iterations of QP.

Of course this comparison is very much hardware dependent, but it at least is an indication of

what could happen.

Remark 3. The same trick also works for other types of censoring. The key is to introduce

some new variables so that the log likelihood function is just
∑

log xi. This, for example, works

for interval censored data where for an interval censored observation the log likelihood term is

log xi, and xi now equals the sum of the probabilities located inside the interval of observation

i.

4. Empirical Likelihood Ratio Computation

The SQP method is a very powerful way to find the maximizer of a log empirical likelihood

function under constraints which in turn allows us to compute the empirical likelihood ratio

statistic. After we obtain w̃ and ŵ, Wilks’ theorem can then be used to compute the P-value

of the observed statistic. Thus, we can use the empirical likelihood ratio to test hypotheses and

construct confidence intervals.

We have implemented this SQP in the R software (Gentleman and Ihaka 1996). The R

function el.cen.test that computes the empirical likelihood ratio for right censored observa-

tions with one mean constraint has been packaged as part of the emplik package and posted

on CRAN (http://cran.us.r-project.org). Our implementation of QP in R uses the R functions

backsolve(), qr() which in turn call the corresponding LINPACK routines.

To illustrate the application, we will show the simulation results for right censored data and

give one example for interval censored data.

4.1 Confidence Interval, real data, right censored

Veteran’s Administration Lung cancer study data (for example available from the R package

survival). We took the subset of survival data for treatment 1 and the smallcell group. There

are two right censored observations. The survival times are:

30, 384, 4, 54, 13, 123+, 97+, 153, 59, 117, 16, 151, 22, 56, 21, 18, 139, 20, 31, 52, 287, 18,

51, 122, 27, 54, 7, 63, 392, 10.
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We used the empirical likelihood ratio to test the null hypothesis that the mean is equal to

µ (for various values of µ). The 95% confidence interval for the mean survival time is seen to

be [61.708, 144.915] since the empirical likelihood ratio test statistic -2LogLikRatio= 3.841 both

when µ = 61.708 and µ = 144.915.

The MLE of the mean is 94.7926 which is the integrated Kaplan-Meier estimator. We see

that the confidence interval is not symmetric around the MLE, this is typical for confidence

intervals based on likelihood ratio tests.

4.2 Simulation: right censored data

We randomly generated 5000 right-censored samples, each of size n = 300, as in equation (1),

where X is taken from N(1, 1), C from N(1.5, 1). Censoring percentage is around 10%− 20%.

The software R is used in the implementation. We tested the null hypothesis H0 :
∑n

i=1 wiZiδi =

µ = 1, which is true for our generated data.

We computed 5000 empirical likelihood ratios, using the Kaplan Meier estimator’s jumps as

(w̃) which maximizes the denominator in (9) and we used the SQP method to find (ŵ) that

maximizes the numerator under the H0 constraint. The Q-Q plot based on 5000 empirical
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Figure 1: Q-Q Plot of −2log-likelihood Ratios vs. χ2
(1) Percentiles for Sample Size = 300

likelihood ratios and χ2
1 percentiles is shown in Figure 1. At the point 3.84 (or 2.71) which

is the critical value of χ2
1 with nominal level 5% (or 10%), if the −2log-likelihood ratio line is

above the dashed line (45◦ line), the probability of rejecting H0 is greater than 5% (or 10%).
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Otherwise, the rejection probability is less than 5% (or 10%). From the Q-Q plot, we can see

that the χ2
1 approximation is pretty good. Only at the tail of the plot, the differences between

the percentiles of −2log-likelihood ratios and χ2
1 are getting bigger.

4.3 Example – Interval Censored Case

As we mentioned before, the SQP method can also be used to compute the (constrained) non-

parametric MLE with interval censored data. We use the breast cosmetic deterioration data from

Gentleman and Geyer (1994) as an example. The data consist of 46 early breast cancer patients

who were treated with radiotherapy, but there are only 8 intervals with positive probabilities. We

use SQP to compute the probabilities for these 8 intervals under the constraint
∑8

i=1 Xipi = µ,

where µ is the population mean which we want to test, Xi is the midpoint of each interval, pi is

the probability of the corresponding interval. Table 3.1 lists the probabilities for two different

constraints. The mean of the unconstrained NPMLE is 33.5809, therefore the hypothesis H0 :

µ = 33.5809 is equivalent to imposing no constraint, and the P-value is 1.

left right H0 : µ = 33.5809 H0 : µ = 40
4 5 0.04634407 0.01954125
6 7 0.03336178 0.01543886
7 8 0.08866270 0.03917190
11 12 0.07075012 0.03524150
24 25 0.09264346 0.05263571
33 34 0.08178547 0.06119782
38 40 0.12087966 0.09192321
46 48 0.46557274 0.68484974
−2LLR(H0) 0 7.782341

Table 3.1: Restricted set of intervals and the associated probabilities

Discussion: One drawback of the SQP method is that it becomes more memory/computationally

intensive for larger sample sizes. The cost increases at the rate of n2. This is in contrast to

the Lagrange multiplier method mentioned above where (when available) r remains fixed as

the sample size n increases. However, we argue that this is not a major drawback for SQP

because (1) the advantages of the empirical likelihood ratio method are most pronounced for

small to medium sample sizes. Often for large samples, there are alternative, equally effective

and easily computable statistical methods available, as for example the Wald method. (2) by

our implementation of the SQP method in R, we can easily handle sample sizes of up to 2000
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on today’s average PC (20 seconds on a 3 GHz, 512MB PC). With computer hardware getting

cheaper, this drawback should diminish and not pose a major handicap for the SQP method for

most applications.

Of course, not all constrained maximization problems have a solution. If the H0 constraint

is too far away from the sample mean, this may well happen. See Owen (1988 p.238) for further

discussion. When this happens, we should define the likelihood ratio to be zero, implying that

this is an impossible H0.

There may be simpler methods available to compute w̃, the NPMLE without constraint. In

the case of Example 1, this is the well known Kaplan-Meier estimator.

I would like to thank Arne Bathke and an anonymous referee for careful reading of the paper

and many suggestions that led to a clearer presentation.
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