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Optimization Methods

Introduction

Let f(x) be a given real-valued function on <p. The general optimization problem is to
find an x ε<p at which f(x) attain a maximum or a minimum. It is of great interest to
statisticians because both maximum likelihood estimation and estimation by least-squares
method are special optimization problems. The function f is called the objective function.
Since a maximum of f(x) is a minimum of −f(x), discussion can be restricted to function

minimization only . In the following discussion it will be assumed that f is twice differentiable
and has continuous derivatives with respect to each of the x’s over its range.

If the function f is differentiable at its minimum value with continuous derivatives, then
its gradient vector

f ′(x) =

(

∂f

∂x1

,
∂f

∂x2

, · · · , ∂f

∂xp

)T

(sometimes denoted by ∇f(x) in the optimization literature) has a zero at this minimum
value. Hence, solving the minimization problem is equivalent to solving the nonlinear system
of equations f ′(x) = 0. Therefore, methods available for the solution of nonlinear systems
of equations become a special class of optimization methods.

However, those methods may not solve the minimization problem for several reasons.
One of these is that, although at a stationery point of f the gradient function f ′(x) vanishes,
a necessary condition for the solution to f ′(x) = 0 to be a minimum is that the Hessian

matrix H = f ′′(x) (sometimes denoted by ∇2f(x)), where

f ′′(x) =

(

∂2f

∂xi∂xj

)

p×p

be positive definite when evaluated at that solution.

Example 1: Consider minimization of the function

f(x) = 3x2
1 + 3x2

2 + 6x2
3 − 2x1x2 − 4x1x3 − 3x1 − 4x2

whose first derivatives are:

∂f

∂x1

= 6x1 − 2x2 − 4x3 − 3

∂f

∂x2

= 6x2 − 2x1 − 4

∂f

∂x3

= 12x3 − 4x1

1



Setting

f ′(x) =







6x1 − 2x2 − 4x3 − 3
−2x1 + 6x2 − 4
−4x1 + 12x3





 = 0

and solving, we get x1 = 13/12, x2 = 37/36, x3 = 13/36. Thus x∗ = (13/12, 37/36, 13/36)T

is a stationery point of f. Evaluating the Hessian matrix at x∗

∂2f
∂x2

1
= 6 ∂2f

∂x2
2

= 6

∂2f
∂x1∂x2

= −2 = ∂2f
∂x2∂x1

∂2f
∂x2∂x3

= 0 = ∂2f
∂x3∂x2

∂2f
∂x1∂x3

= −4 = ∂2f
∂x3∂x1

∂2f
∂x2

3
= 12

we get:

H = f ′′(x) =







6 −2 −4
−2 6 0
−4 0 12







H is positive definite showing that x∗ is a minimum of f . 2

The minimization problem thus became a problem of solving a set of simultaneous equa-
tions. In general, f ′(x) is a nonlinear system of equations, transforming the minimization
problem into a root finding problem. The secant method and Newton-Raphson, two clas-
sical algorithms for root finding, and other methods were referenced in an earlier section.
Algorithms for root finding thus fall into the class of search methods for the minimization
problem discussed below.

Note that, the solution to f ′(x) = 0, even if f ′′(x) is positive definite at that value, may
represent only a local minimum and not a global minimum. Note also that these methods
require both the gradient vector f ′(x) and the Hessian matrix f ′′(x) to be computed, and
when neither is available analytically, one must replace these quantities with appropriate
discrete approximations. For the purpose of this discussion, let g(x) denote the gradient
vector f ′(x) and H(x) denote the Hessian matrix f ′′(x), both evaluated at x.

Descent Methods

The optimization algorithms considered here are all iterative and of the form

x(i+1) = x(i) + α(i)d(i) (1)

and are designed to improve on an initial guess x(0) and converge to a solution. Computations
at the ith iteration involve determining the vector d(i), called the step direction or the direction

vector, and α(i)‖d(i)‖, called the step size. Directions d(i) are called admissible if f(x(i+1)) ≤
f(x(i)) as α(i) → 0 i.e., the new iterate x(i) + α(i)d(i)decreases the objective function in
magnitude at α = 0. Those algorithms that employ only admissible directions in each
iteration are called descent methods. Iterative algorithms for optimization thus involve two
steps:
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1. to determine a search direction d(i), usually a descent direction, and

2. to search along the line to determine a step size, α(i) that minimizes f along that line.

In the next section, strategies for determining step size α(i) in Equation 1, defining part of
an iterative procedure for finding the minimum of f are discussed.

Linear Search Methods

The basic problem is to find α which minimizes ρ(α) = f(x(i)+αd(i)) for a fixed direction
d(i). There are two basic types of methods for linear search:

• one depends on reducing the size of the interval that contains the minimum, and

• the other attempts to approximate ρ(α) by a polynomial (say, a quadratic) whose
minimum is easily computed using a well-known formula.

To use any of these methods, initial interval [a, b] must be found such that ρ(·) is unimodal
in that interval.

The Golden-section search is a bracketing algorithm that begins with an interval [a, b]
where ρ is unimodal and reduces the length of the interval by a fixed factor in each iteration.
Algorithms for the Golden-section search are described in Kennedy and Gentle (1980) and
Thisted (1988). Suppose that the interval of uncertainty is [a, b] and ρ is unimodal in [a, b].
Evaluate ρ(α) at α1 ε (0, 1) where

1

α1

=
α1

1− α1

.

This gives α1 = (
√

5 − 1)/2 = .618033989, that is, evaluate ρ at α1 = a + .618034(b − a)
and at α2 = a + b − α1, symmetrically on the other side of the interval [a, b], respectively.
The interval of uncertainty is reduced to a length L = .618 depending on which value of ρ is
smaller. In general after n evaluations, L = (.618)n−1. For example, after 5 evaluations L
reduces to .146(b− a). Fibonacci search is another similar search method.

Approximating ρ(α) by a polynomial in α, for example, by quadratic interpolation, is
another approach for minimizing ρ(α). Let ρ(α) ≈ Aα2 + Bα + C. By evaluating ρ(α)
at pre-specified values α1, α2 and α3, A, B, and C can be determined exactly by solving
a system of equations. Since the optimum of ρ(α) occurs at α = −B/2A, a closed form
formula for the minimum point is:

α =
(α2

3 − α2
2)ρ(α1) + (α2

2 − α2
1)ρ(α3) + (α2

1 − α2
3)ρ(α2)

2[(α3 − α2)ρ(α1) + (α2 − α1)ρ(α3) + (α1 − α3)ρ(α2)]

This is then improved by reapplying the quadratic interpolation using this value as one of
the starting values. Kennedy and Gentle (1980) also describes an algorithm due to Davidon
(1959) where a cubic polynomial is fitted to ρ(·) using 3 points. Thisted (1988) describes a
method called successive approximation due to Berman (1966).
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Selecting Descent Directions

Several methods for function minimization via iterative methods are described here. Some
methods are just variations of a basic method. No single method will be able to solve every
minimization problem that arise in practice. But a good understanding of available methods
is necessary for the user to be able to either select an appropriate method that is suitable
for a particular objective function or to fine tune an algorithm to take advantage of special
features of the problem at hand.

Method of Steepest Descent

In this method the choice for d is taken as the negative of the gradient vector, −f ′(x)
since, obviously, at any given point x(i) where f ′(x) is nonzero, the gradient vector defines
the direction in which f is decreasing most rapidly. Thus the iteration becomes

x(i+1) = x(i) − α(i) g(i).

where g(i) ≡ g(x(i)) = f ′(x(i)). In actual implementation of the algorithm, g is normalized
at each step, so that g(i) is replaced in above by g∗

(i) where g∗
(i) = g(i)/(g

T
(i)g(i))

1/2. This
algorithm is seldom used today because it is too slow to converge; however, it may serve a
purpose as a start-up routine for other algorithms, by providing good starting values after a
few iterations.

Example 2: Minimize the function:

f(x) = 100(x1 − 15)2 + 20(28− x1)
2 + 100(x2 − x1)

2 + 20(38− x1 − x2)
2

The first derivative is:

f ′(x) =

(

200(x1 − 15)− 40(28− x1)− 200(x2 − x1)− 40(38− x1 − x2)
200(x2 − x1)− 40(38− x1 − x2)

)

Using starting values

x(0) =

(

10
14

)

we compute

g(0) = f ′(x) (10,14) =

(

−3080
+240

)

and hence

d = −g(0) =

(

3080
−240

)

Compute f(x(0) − αg(0)) by substituting

x
(0)
1 = 10 + 3080α

x
(0)
2 = 14− 240α
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in f(x) above. Perform a one-dimensional search on f(x(0)−αg(0)) to find α which minimizes
it. For this example we use calculus i.e., by setting ∂f/∂α = 0 we get α(0) = .00199, giving

x(1) =

(

10
14

)

+ .00199

(

3080
−240

)

=

(

16.12
13.52

)

Now compute g(1) and then α(1) and so on. 2

Convergence of the Method of Steepest Descent of Example 2
Iteration x1 x2 −g1 −g2 αi f

1 10.00 14.00 3080 -240.0 0.00199 14,500
2 16.12 13.52 66.51 853.5 0.00462 5019
3 16.43 17.46 549.4 42.82 0.00199 3328
4 17.52 17.38 11.87 152.3 0.00462 3026
5 17.57 18.08 98.02 -7.64 0.00199 2972
6 17.77 18.06 2.12 27.16 0.00462 2963
10 17.82 18.21 0.071 0.861 0.00464 2960.71
14 17.821 18.214 0.00488 0.02808 0.00535 2960.71
15 17.821 18.214 0.01953 0.00244 0.00191 2960.71
16 17.821 18.214 0.00244 0.00610 0.00644 2960.71

Newton-Raphson Algorithm

The most natural direction to take seems to be that suggested by the Newton-Raphson
iteration introduced for solving systems of nonlinear equations. Recall that we used Newton-
Raphson to solve f(x) = 0 using the iteration x(i+1) = x(i) − f(x(i))/f

′(x(i)). We first
extend the N-R iterative formula to solve f(x) = 0, where f is a vector valued function,
f : <n −→ <n i.e., suppose f(x) is a system of n nonlinear simultaneous equations in n
unknowns, and continuously differentiable at x ε<p

f(x)

n× 1 =













f1(x)
f2(x)

...
fn(x)













f ′

(x)

n× n =













f ′1(x)T

f ′2(x)T

...
f ′n(x)T













=

(

∂fi

∂xj

)

n×n

where f ′(x) is an n × n matrix called the Jacobian of f evaluated at some x and is usually
denoted by J(x). Thus the Newton-Raphson iteration for solving f(x) = 0 is given by:

x(i+1) = x(i) −
[

J(x(i))
]−1

f(x(i))
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where J is the n× n Jacobian matrix of f given by f ′(x).
Example 3: Let

f : R2 −→ R2

f1(x) = ex1 − x2

f2(x) = x2
1 − 2x2

Then

f ′(x) =

(

ex1 −1
2x1 −2

)

= J.

The N-R iteration for solving the system of nonlinear equations f(x) = 0 as given by

x(i+1) = x(i) −
[

J(x(i))
]−1

f(x(i))

where J is the n × n Jacobian matrix of f , is applied to solve the system g(x) = 0 in the
optimization problem, where g is the gradient vector. The required iteration then becomes

x(i+1) = x(i) −
[

f ′′(x(i))
]−1

g(x(i))

= x(i) − [H(xi)]
−1

g(x(i)),

= x(i) −H−1
(i) g(i).

Note that in this case, the Jacobian matrix J is replaced by the Hessian H and the vector-
valued function f(x) is replaced by the gradient vector g.

Example 4: Minimize the function:

f(x) = 100(x1 − 15)2 + 20(28− x1)
2 + 100(x2 − x1)

2 + 20(38− x1 − x2)
2

using the Newton-Raphson algorithm. Start with:

x(0) =

(

10
14

)

The gradient vector is:

f ′(x) =





200(x1 − 15)− 40(28− x1)− 200(x2 − x1)− 40(38− x1 − x2)

200(x2 − x1)− 40(38− x1 − x2)





The Hessian is:

f ′′(x) =

(

200 + 40 + 200 + 40 −200 + 40
−200 + 40 200 + 40

)

=

(

480 −160
−160 240

)

= 80

(

6 −2
−2 3

)

.

The inverse of the Hessian and the gradient vector evaluated at x(0) are:

H−1 =
1

80× 14

(

3 2
2 6

)

g(0) =

(

−3080
+240

)
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Thus:

H−1g(0) =
1

80× 14

(

3 2
2 6

) (

−3080
+240

)

=

(

−7.821
−4.214

)

and the next iterate is, therefore:

x(1) =

[

10
14

]

−
[

−7.821
−4.214

]

=

[

17.821
18.214

]

.2

Again examining the N-R iteration

x(i+1) = x(i) −H−1
(i) g(i) ,

note that the step-size for this iterative method is fixed at 1 and thus the direction H−1
(i) g(i)

becomes a descent direction when H(i) is positive definite. However, a particular Newton
direction may not be admissible because H(i) is not positive definite for an x(i) that is not
near the minimum. A related problem is that H(i) may become nearly singular, causing
the search to move away from the current iterate because the size of the direction will be
quite large. Thus, Newton steps are not a good choice at the beginning of an optimization
iteration, even though they are optimal near the solution. These practical problems led to
some important modifications of the original method.

Levenberg-Marquardt Adjustment

It is clear that the computation of the Newton step discussed above reduces to solving
the linear system of equations

H(i)d(i) = g(i)

to determine the step direction d(i). When H(i) is not positive definite, it could be substituted
by a modified Hessian that is an approximation that is positive definite. One approach is to
replace the negative eigenvalues of H(i) by their absolute values and zero eigenvalues H(i) by
small positive values. Thus the modified algorithm is

x(i+1) = x(i) − α(i)H
−1

(i) g(i)

where α(i) is a scalar introduced as the step length. Although convergence may be achieved,
this method could be computationally quite expensive. A possibly less expensive alternative
suggested independently by Levenberg (1944) and Marquardt (1963), substitutes

H∗
(i) = H(i) + τ(i)Ip

in place of H(i) where τ(i) ≥ 0 is chosen at each iteration such that the adjusted matrix H∗
(i)

is positive definite. Note that this will define a descent direction whenever τ(i) > λmin where
λmin is the smallest eigenvalue of H(i). Thus the choice of τ depends on the current value
of H(x) and therefore has to be recomputed at each step. When τ is small, the modified
direction remains close to the Newton direction. As iteration proceeds, the sequence of τ(i)’s
should become progressively smaller in order to achieve quadratic convergence. Dennis and
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Schnabel (1983) discuss methods used in practice to achieve this as well give corresponding
algorithms.

Other Methods for Adjusting the Step Direction

A method due to Gill and Murray (1974) consider the use of a Cholesky-type decomposition
to solve the equations

Hd = g

for determining step direction. This is described in detail in Kennedy an Gentle (1980).

Quasi-Newton Methods

Davidon (1959) first suggested the use of approximations to the Hessian matrix to over-
come difficulties associated with the exact computation of the Hessian for many objective
functions. Quasi-Newton methods are characterized by the computation of an updated ma-
trix as a by-product of each iteration, to be used as an approximation to the Hessian matrix
(or its inverse) in the following step.

The quasi-Newton methods (also called variable metric methods) discussed here also
apply generally to the problem of solving nonlinear systems of equations where Newton
iterations are used. Also note that the two most popular quasi-Newton algorithms were
proposed for solving optimization problems associated with scalar objective functions (such
as those that occur in maximum likelihood (ML) and nonlinear least squares estimation (LS)
problems). Consider the standard Newton-Raphson iteration

x(i+1) = x(i) − α(i)H
−1
(i) g(i).

To reduce the computational effort in obtaining H−1
(i+1), it can be shown that under quite

general conditions H−1
(i+1) can be obtained by updating it with a low-rank matrix. i.e.

H−1
(i+1) = H−1

(i) + M(i)

where M(i) is typically a matrix of rank one or two.
The justification of this is that by using the first order approximation

g(i+1) ≈ g(i) + H(i)(x(i+1) − x(i))

it should be possible to obtain curvature information at the point x(i) using

(x(i+1) − x(i))
TH(i)(x(i+1) − x(i)) ≈ (x(i+1) − x(i))

T (g(i+1) − g(i))

and thus use this information to update H(i) directly (or its inverse using the Sherman-
Morrison formula). It is easy to observe that the relationship (called the secant condition or
the quasi-Newton condition)

g(i+1) − g(i) = B(i)(x(i+1) − x(i))

must be satisfied by a matrix B(i) that is an approximation to the Hessian matrix. Recall that
in the univariate case for solving nonlinear equations, the Newton-Raphson was generalized
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to the secant method by solving for B (one-dimensional). For the optimization case this
would reduce to

f ′′(x(i+1)) ≈ (f ′(x(i+1))− f ′(x(i)))/(x(i+1) − x(i))

However, in the multidimensional case, B cannot be uniquely determined without imposing
some conditions. For example, an algorithm must find a solution to the above equation that
is closest to the current estimate i.e., minB ‖B−B(i)‖ and satisfies the curvature condition

i.e., (x(i+1) − x(i))
TB(x(i+1) − x(i)) > 0, and also must maintain the symmetry and positive

definiteness of B. These algorithms also include a line search in each step i.e., must estimate
step length parameter α(i) in each step. If the line search is not an exact minimizer (because
of the need for efficient computation), there are certain conditions (called Wolfe conditions)
that an inexact estimate of α(i) must satisfy, so that the resulting matrix B remains positive
definite. Some step length algorithms such as that based on cubic interpolation satisfies
these conditions.

Rank one updates (e.g., SR1 or symmetric rank one method) maintains the symmetry
but does not guarantee a positive definite update and therefore will not be considered in
this discussion. Of the quasi-Newton methods based on rank 2 matrix updating, two are
of particular interest in statistical computation:the Davidon-Fletcher-Powell (DFP) method
and the BFGS algorithm. The BFGS is widely used, more popular and included in software
systems and libraries because it is less affected by the innacuracy of the line search estimate.
Both these methods ensure that H(i) remains positive definite if H(0) is positive-definite,
which is true in the case of ML and LS. Under some mild conditions, the convergence rate
is super-linear near the minimum. The Broyden class of algorithms is defined by a linear
combination of the DFP and the BFGS updates. Both DFP and the BFGS algorithm can
be expressed in terms of H(i) or H−1

(i) ; however the updates are expressed below in the most
convenient way first.

D-F-P Algorithm

The Davidon-Fletcher-Powell method (Davidon (1959); Fletcher and Powell (1963)) is
fairly well-known in statistical computing, and is widely used. Let

d(i) = x(i+1) − x(i) = −α(i)H
−1
(i) g(i)

and
e(i) = g(i+1) − g(i) .

Then the algorithm uses the update H−1
(i+1) where

H−1
(i+1) = H−1

(i) +
d(i)d

T
(i)

dT
(i)e(i)

−
H−1

(i) e(i)e
T
(i)H

−1
(i)

eT
(i)H

−1
(i) e(i)

The complete computational algorithm of using the update for the optimization problem
is given in Kennedy and Gentle (1980) p.456. It also includes a discussion of numerical
problems associated with this algorithm and possible solutions.
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Starting with x(0), H(0) = I, and i = 0

1. Compute d(i) = −H−1
(i) g(i).

2. Compute α(i) to minimize ρ(α) = f(x(i) + αd(i)).

3. Set

x(i+1) = x(i) + α(i)d(i)

e(i) = g(i+1) − g(i)

4. Check x(i+1), f(x(i+1)) and g(i+1) for termination.

5. Compute

H−1
(i+1) = H−1

(i) +
d(i)d

T
(i)

dT
(i)e(i)

−
H−1

(i) e(i)e
T
(i)H

−1
(i)

eT
(i)H

−1
(i) e(i)

The algorithm for the update H(i+1) is more complicated:

H(i+1) = H(i) −
H(i)d(i)d

T
(i)H(i)

dT
(i)H(i)d(i)

+
e(i)e

T
(i)

eT
(i)d(i)

+ (dT
(i)H(i)d(i))w(i)w

T
(i)

where

w(i) =
e(i)

eT
(i)d(i)

− H(i)d(i)

dT
(i)H(i)d(i)

BFGS Algorithm

The second rank two update is known as the Broyden, Fletcher, Goldfarb, Shanno
(BFGS) algorithm, proposed independently by Broyden (1970), Fletcher (1970), Goldfarb
(1970) and Shanno (1970), and is generally considered superior to the Devidon-Fletcher-
Powell algorithm. It is given in terms of H(i), below:

H(i+1) = H(i) −
H(i)d(i)d

T
(i)H(i)

dT
(i)H(i)d(i)

+
e(i)e

T
(i)

dT
(i)e(i)

Using the Sherman-Morrison formula, the BFGS update of the inverse is given as:

H−1
(i+1) = H−1

(i) +



1 +
eT

(i)H
−1
(i) e(i)

dT
(i)e(i)





d(i)d
T
(i)

dT
(i)e(i)

−
d(i)e

T
(i)H

−1
(i) + H−1

(i) e(i)d
T
(i)

dT
(i)e(i)

Example 5: Recall that

f(x) = 100(x1 − 15)2 + 20(28− x1)
2 + 100(x2 − x1)

2 + 20(38− x1 − x2)
2

g(x) = f ′(x) =

(

200(x1 − 15)− 40(28− x1)− 200(x2 − x1)− 40(38− x1 − x2)
200(x2 − x1)− 40(38− x1 − x2)

)
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Let

x(0) =

(

10
14

)

as before and

g(0) = g(x0) =

(

−3080
240

)

Start with H−1
(0) = I2. Compute first direction d(0) = −H−1

(0) = g(0) =

(

3080
−240

)

or in

normalized form d(0) =

(

.997
−0.078

)

. At this stage it is needed to minimize

f(x(0) + αd(0)) = 100(10 + .997α− 15)2 + 20(28− 10− .997α)2 + · · ·

with respect to α. This would normally involve a cubic polynomial search. Here, for
obtaining a minimum to continue with the iteration for illustrating the procedure, we will
set ∂f

∂α
= 0 and solve the resulting equation, giving α(0) = 6.136. Thus the next iterate is:

x(1) = x(0) + α(0)d(0)

=

(

10
14

)

+ 6.136

(

.997

.078

)

=

(

16.12
13.52

)

To continue, compute g(1) and e(0):

g(1) = g(x(1)) =

(

−65.6
−854.4

)

e(0) = g(1) − g(0) =

(

−65.6
−854.4

)

−
(

−3080
240

)

=

(

3014.4
−1094.4

)

So

H−1
(1) = H−1

(0) +
d(0)d

T
(0)

dT
(0)e(0)

−
H−1

(0)e(0)e
T
(0)H

−1
(0)

eT
0 H−1

(0)e(0)

=

(

6.21543 −.154468
−.154468 .920572

)

This ends the first iteration. Computing the second direction:

d(1) = −H−1
(1)g(1)

= −
(

6.21543 −1544
.920572

) (

−65.6
−854.4

)

=

(

275.755
776.404

)
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or in normalized form equal to

(

.3357
.942

)

. To minimize f(x(1) + αd(1)) with respect to α,

set ∂f
∂α

= 0 giving α(1) = 4.990. Thus

x(2) = x(1) + α(1)d(1) =

(

17.82
18.21

)

,

and therefore

g(2) = g(x(2)) =

(

−0.017
−0.001

)

Theoretically, at this stage g(2) should equal 0 because f(x) is quadratic. f(x(2)) = 2960.716
is the minimum of f(x) if we stop the iteration at this stage.

Conjugate Gradient Methods

Two directions u and v are conjugate with respect to the positive definite matrix A if
u′Av = 0. The two directions are said to be A-conjugate.

Theorem: If ξ1, ξ2, . . . ξr are a set of vectors mutually conjugate with respect to the
positive definite r × r matrix A, then the minimum of the quadratic form

f = a + bTx +
1

2
xT Ax

can be reached from an arbitrary starting point x(0) by a finite descent computation in which
each of the vectors ξi (i = 1, . . . , r.) is used as a descent direction only once. The order in
which ξi are used is immaterial.

This implies that if the function to be minimized is the given quadratic form, then the
minimum could be located in r successive one dimensional searches, in the r conjugate
directions. Since any function which is not necessarily a quadratic form, approaches a
quadratic surface near the minimum, convergence is assured if we start near enough to the
minimum point. Expand f(x) about an arbitrary point x0 in a Taylor series and set

f(x) ≈ f(x0) + f ′(x0)
T (x− x0) +

1

2
(x− x0)

T f ′′(x0) (x− x0)

where f ′(x0) = g(x0) and f ′′(x0) = H(x0) as before. If x0 is a minimum, g(x0) = 0 implying
that

f(x) ≈ f(xmin) +
1

2
(x− xmin)TH(xmin)(x− xmin)

Because of the fact that near the optimum the function f(x) is nearly quadratic, in light of
the above theorem, we can use the above approximation to conjecture that using conjugate
directions with respect to H(xmin) would lead to a good algorithm for the optimization
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problem. Of course since xmin is unknown, H(xmin) cannot be evaluated and thus it is
impossible to calculate the conjugate directions in advance. In the method of Fletcher and
Reeves, the directional vectors ξ(0), ξ(1), . . . are generated in a sequential fashion such that
the descent direction at the current point, ξ(i+1), is a linear combination of the negative
gradient at the current point, −g(i), and the previous descent directions, ξ(0), ξ(1), . . . ξ(i),
so that H-orthogonality, namely,

ξT
(i)Hξ(j) = 0, j = 0, . . . , i− 1

is satisfied. Let us begin by setting ξ(0) = −g(0). We have

x(1) = x(0) + α(0)ξ(0)

where, α(0) is found by minimizing f(x(0) +αξ(0)) as a function of α. Now let ξ(1) be a linear
combination of the negative gradient at the new point, −g(1) and the previous direction,
that is

ξ(1) = −g(1) + γ(1)ξ(0),

γ(1) is chosen so that ξ(0) and ξ(1) are H-conjugate. This involves solving ξT
(0)Hξ(1) = 0 and

the above relation simultaneously, and results in

γ(1) =
gT

(1)g(1)

gT
(0)g(0)

.

In general we have
ξ(i+1) = −g(i+1) + γ(i+1)ξ(i),

where γ(i+1) is chosen so that ξ(i+1) and ξ(i) are H-conjugate. Then γ(i+1) is given by

γ(i+1) =
gT

(i+1)g(i+1)

gT
(i)g(i)

.

Hestenes and Stiefel(1953) proposed this solution for quadratic functions and Fletcher and
Reeves(1964) applied it for the general case. In general, this leads to the following algorithm:

Fletcher and Reeves Algorithm

1. Select starting point x(0)

2. Compute g(0) and set ξ(0) = −g∗
(0) where g∗

(0) = g(0)/(g
T
(0)g(0))

1/2 (i.e., normalized g(0))

3. For i = 0, . . . , p− 1 do

(a) Set x(i+1) = x(i) + α(i) ξ(i), where α(i) is found by minimizing f(x(i) + α(i) ξ(i))
using a linear search method, usually cubic polynomial interpolation.

(b) Compute g(i+1) = f ′(x(i+1)).

(c) Set ξ(i+1) = −g(i+1) +
gT

(i+1)
g(i+1)

gT

(i)
g(i)

ξ(i), and return to a).
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4. Replace x(0) by x(p) and restart iteration.

The last step 4.) was suggested by Fletcher and Reeves and ensures that when the conditions
for quadratic convergence becomes valid near the minimum, the construction of conjugate
directions is restarted.
Example 7: Again consider the minimization of

f(x) = 100(x1 − 15)2 + 20(28− x1)
2 + 100(x2−1)

2 + 20(38− x1 − x2)
2

As before,

f ′(x) = g(x) =

(

200(x1 − 15) + 40(28− x1)− 200(x2 x1)− 40(38− x1 − x2)
200(x2 − x1 − 40(38− x1 − x2)

)

Starting with

x(0) =

(

10
14

)

g(0) =

(

−3080
240

)

and

ξ(0) = −g(0) =

(

+3080
−240

)

normalized to ξ(0) =

(

.997
−.078

)

Thus

x(1) = x(0) + α(0) ξ(0)

Repeating the process, α(0) = 6.136 minimizes f(x(0) + α ξ(0)) as before, giving

x(1) = x(0) + 6.136 ξ(0) =

(

16.12
13.52

)

and therefore g(1) =

(

−65.6
−854.4

)

.

Now,

ξ(1) = −g(1) +
gT

(1) g(1)

gT
(0) g(0)

ξ(0) =

(

302.57
835.94

)

which is normalized to

(

0.340
0.940

)

.

Thus x(2) = x(1) + α1 ξ(1) and minimizing f(x(1) + α1 ξ(1)) gives α1 = 4.994. Hence

x(2) =

(

17.82
18.21

)

giving

g(2) =

(

−.017
−.001

)

. 2
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Direct Search Algorithms

Main feature of direct search algorithms are that they do not require evaluation of derivatives
of the objective function, thus readily applicable to problems for which analytical derivatives
are difficult to compute.

Nelder-Mead Simplex Algorithm

A simplex is a geometrical shape formed by joining (p + 1) points in Euclidean p-space.
For example, a triangle in 2-dimensional space is a 2-dimensional simplex. This algorithm
attempts to move a simplex on the objective function surface using reflections, extensions,
contractions and shrinking of the sides forming the simplex. Simplex procedure attempts to
produce moves in opposite directions from high values of the objective function rather than
moving linearly towards a minimum, thus finding a zigzag path to the minimum.

Let x be p× 1 and x0, . . . ,xp be starting values.

Initialize:

Evaluate f at each x0, . . . ,xp:

fi = f(xi) i = 0, . . . , p

Let the 3 largest values of f , fh ≥ fm ≥ f` correspond to xh, xm, x`, respectively. Thus the
new simplex is xh, xm, x`.

Start:

Step 0: Use a reflection to move away from xh. Compute centroid xg of the
other p-points:

xg =
1

p

∑

i6=h

xi

and xr = xh + 2(xg − xh) = 2xg − xh. Set fr = f(xr)

Step 1: If fr < f`

Use an extension to move further from the minimum xr in the same
direction. Compute

xe = xr + (xr − xg) = 2xr − xg

and set fe = f(xe)
Step 1a: If fe < fr

Construct new simplex with xh ← xe

Else

Construct new simplex with xh ← xr

Test for convergence and restart.
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Step 2: Else if fr < fm

(i.e., xr is not the minimum, but better than xm and xh)

Construct new simplex with xh ← xr. Test for convergence and restart.
Step 3: Else if fh < fr.

(i.e.,xr is worse than xm and x`)
Use a contraction from xg. Compute

xc = xh +
1

2
(xg − xh) =

1

2
(xh + xg)

and set fc = f(xc), go to Step 4.

Else

(i.e.,xr is better than xh but worse than xm or x`).
Use a contraction from xr. Compute

xc = xg +
1

2
(xr − xg) =

1

2
(xg + xr)

and set fc = f(xc), go to Step 4.

Step 4: If fc < fh

Construct new simplex with xh ← xc. Test for convergence and restart.

else

Replace original simplex x0, . . . ,xp by x′
i = 1

2
(xi + x`) i.e., halve the

distance of each point from x`. Recalculate fi = f(x′
i). Test for

convergence and restart.

Test for convergence: Generally based on the standard deviation of the (p+ 1) function
values. If

s =

{

1

p

p
∑

i=0

(fi − F̄ )2

}
1
2

< e

claim convergence achieved.
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Nelder-Mead Sample Computations

x Point Function
Value

Original Simplex (10,14) T2 14,500
(10,8) T3 17,380
(7,10) T1 24,940
(10,11) T4 Centroid of T2 and T3

(13,12) T5 8,380 T1 Reflected to T5

(16,13) T6 5,500 Expand to T6

New Simplex (16,13) T6 5,500 Replace T1 with T6

(10,14) T2 14,500
(10,8) T3 17,380
(13,13.5) T7 Centroid of T2 and T6

(16,19) T8 4,060 T3 Reflected to T8

(19,24.5) T9 6,850 Expand to T9 which fails

New Simplex (16,19) T8 4,060 Replace T3 with T8

(16,13) T6 5,500
(10,14) T2 14,500
(16,16) T10 Centroid of T6 and T8

(22,18) T11 7,300 T2 Reflected to T11

(19,17) T12 3,700 Contraction from T11

New Simplex (19,17) T12 3,700 Replace T2 with T12

(16,19) T8 4,060
(16,13) T6 5,500

The process is repeated, Each new simplex formed has lower average function value than
preceding ones. After 40 calculations of the objective function, the simplex is

(17.8,18.4) 2,965
(18.0,18.3) 2,965
(17.7,18.0) 2,966

with s = (
∑

(fi − F )2)1/2 ≈ 0.6. After 55 calculations of the objective function,

(17.8,18.3) 2,961
(17.8,18.2) 2,961
(17.9,18.2) 2,961

with s ≈ 0.07. Note: E(N) = 3.16(n + 1)2.11 for 2 ≤ n ≤ 10.
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Figure 1: Nelder-Mead Simplex Method: Graphical Illustration of the Ex-
ample
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Hooke and Jeeves Pattern Search

A wide variety of techniques has been developed for the minimization of an unconstrained
nonlinear function of multivariables. Among these techniques the direct search methods are
the most easily adaptable for use on computers since they tend to use repeated identical
arithmetic operations with a simple logic. One of these direct search techniques is the
Hooke and Jeeves pattern search technique. It is among the simplest and most efficient
methods for solving the unconstrained nonlinear minimization problems. The technique
consists of searching the local nature of the objective function in the space and then moving
in a favorable direction for reducing the functional value.

The direct search method of Hooke and Jeeves is a sequential search routine for mini-
mizing a function f(x) of more than one variable x = (x1, x2, . . . , xr). The argument x is
varied until the minimum of f(x) is obtained. The search routine determines the sequence
of values for x. The successive values of x can be interpreted as points in an r-dimensional
space. The procedure consists of two types of moves: Exploratory and Pattern.

A move is defined as the procedure of going from a given point to the following point.
A move is a success if the value of f(x) decreases (for minimization); otherwise, it is a
failure. The first type of move is exploratory move which is designed to explore the local
behavior of the objective function, f(x). The success or failure of the exploratory moves is
utilized by combining it into a pattern which indicates a probable direction for a successful
move.

The exploratory move is performed as follows:

1. Introduce a starting point x with a prescribed step length δi in each of the independent
variables xi, i = 1, 2, . . . , r.

2. Compute the objective function, f(x) where x = (x1, x2, . . . , xi, . . . , xr).
Set i = 1.

3. Compute f(x) at the trial point xn = (x1, x2, . . . , xi + δi, xi+1, . . . , xr) . Call it fi(x).

Compare fi(x) with f(x):

(i) If fi(x) < f(x), this move is a success, set this trial point as the starting point.
Set x = xn = (x1, x2, . . . , xi + δi, . . . , xr), f(x) = fi(x), and i = i + 1, and repeat
from step 3.

(ii) If fi(x) ≥ f(x), the move is a failure. Go to Step 4.

4. Compute f(x) at new trial point xn = (x1, x2, . . . , xi − δi, . . . , xr). Call it fi(x).

Compare fi(x) with f(x):

(i) If fi(x) < f(x), this move is a success, retain the new trial point as a starting
point. Set x = xn = (x1, x2, . . . , xi− δi, . . . , xr), f(x) = fi(x), and i = i+1, and
repeat from Step 3.
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(ii If fi(x) ≥ f(x), then the move is a failure and x remains unchanged, set i = i+1
and repeat from Step 3.

The point xB obtained at the end of the exploratory moves, which is reached by repeating
Step 3 and 4 until i = r, is defined as a base point. The starting point introduced in Step
1 of the exploratory move is a starting base point or point obtained by the pattern move.

The pattern move is designed to utilize the information acquired in the exploratory
move, and executes the actual minimization of the function by moving in the direction of
the established pattern. The pattern move is a simple step from the current base to the
point

x = xB + (xB − x∗
B)

x∗
B is either the starting base point or the preceding base point.

Following the pattern move, a series of exploratory moves are performed to further im-
prove the pattern. If the pattern move nor the exploratory moves brings any improvement,
the pattern move is a failure. Then we return to the last base which becomes a starting
base and the process is repeated. Otherwise, the pattern move is a success and a new base
is established.

If the exploratory moves from any starting base do not yield a point which is better than
this base, the lengths of all the steps are reduced and the moves are repeated. Convergence
is assumed when the step lengths, δi, have been reduced below predetermined limits.

Hooke and Jeeves Example

n xB δ x f(x) xn fi(x) Comments

1 B0 (2,2) (5,10) 33,660 Starting Base
2 (5,10) 33,660 (7,10) 24,940 Exp. succ.
3 (7,10) 24,940 (7,12) 24,940 Exp. fail.
4 (7,10) 24,940 (7,8) 25,900 Exp. fail.
2 B1 (7,10) 24,940 f(x2) < f(x1)
5 (9,10) 18,140 Pattern
6 (9,10) 18,140 (11,10) 13,260 Exp. succ.
7 (11,10) 13,260 (11,12) 11,980 Exp. succ.
7 B2 (11,12) 11,980 f(x7) < f(x2)
8 (15,14) 5,100 Pattern
9 (15,14) 5,100 (17,14) 4,700 Exp. succ.

10 (17,14) 4,700 (17,16) 3,420 Exp. succ.

10 B3 (17,16) 3,420 f(x10) < f(x7)
11 (23,20) 8,300 Pattern
12 (23,20) 8,300 (25,20) 13,660 Exp. fail.
13 (23,20) 8,300 (21,20) 4,860 Exp. succ.
14 (21,20) 4,860 (21,22) 5,180 Exp. fail.
15 (21,20) 4,860 (21,18) 5,500 Exp. fail.
13 (21,20) 4,860 Pattern move fail.

f(x13) > f(x10)
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n xB δ x f(x) xn fi(x) Comments

Return to x10(= B3)
10 B3 (17,16) 3,420 Starting base point
16 (17,16) 3,420 (19,16) 4,300 Exp. fail.
17 (17,16) 3,420 (15,16) 4,460 Exp. fail.
18 (17,16) 3,420 (17,18) 3,100 Exp. succ.

18 B4 (17,18) 3,100 f(x18) < f(x10)
19 (17,20) 3,740 Pattern
20 (17,20) 3,740 (19,20) 3,340 Exp. succ.
21 (19,20) 3,340 (19,22) 4,300 Exp. fail.
22 (19,20) 3,340 (19,18) 3,340 Exp. fail.
20 (19,20) 3,340 Pattern move fail.

f(x20) > f(x18)
Return to x18(= B4)

18 B4 (17,18) 3,100 Starting base point
23 (17,18) 3,100 (19,18) 3,340 Exp. fail.
24 (17,18) 3,100 (15,18) 4,780 Exp. fail.
25 (17,18) 3,100 (17,20) 3,740 Exp. fail.
26 (17,18) 3,100 (17,16) 3,420 Exp. fail.

18 B4 (17,18) 3,100 No better base
Exp. fail.
δ(2, 2) > (0.05, 0.05)
Reduce δ(2,2)
to δ(1,1)

18 B4 (1,1) (17,18) 3,100 Starting base point
27 (17,18) 3,100 (18,18) 2,980 Exp. succ.
28 (18,18) 2,980 (18,19) 3,020 Exp. fail.
29 (18,18) 2,980 (18,17) 3,180 Exp. fail.

27 B5 (18,18) 2,980 f(x27) < f(x18)
30 (19,18) 3,340 Pattern
31 (19,18) 3,340 (20,18) 4,180 Exp. fail.
32 (19,18) 3,340 (18,18) 2,980 Exp. succ.
33 (18,18) 2,980 (18,19) 3,020 Exp. fail.
34 (18,18) 2,980 (18,17) 3,180 Exp. fail.
32 (18,18) 2,980 f(x32) 6< f(x27)

Pattern move fail.
Return to x27(= B5)
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n xB δ x f(x) xn fi(x) Comments

27 B5 (18,18) 2,980 Starting base point
35 (18,18) 2,980 (19,18) 3,340 Exp. fail.
36 (18,18) 2,980 (17,18) 3,100 Exp. fail.
37 (18,18) 2,980 (18,19) 3,020 Exp. fail.
38 (18,18) 2,980 (18,17) 3,180 Exp. fail.
27 (18,18) 2,980 No better base

Exp. fail.
δ(1, 1) > (0.05,0.05)
Reduce δ (1,1) to
δ(0.5, 0.5)

27 B5 (0.5,0.5) (18,18) 2,980 Starting base point
29 (18,18) 2,980 (18.5,18) 3,100 Exp. fail.
40 (18,18) 2,980 (17.5,18) 2,980 Exp. fail.

...
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Figure 2: Hooke and Jeeves Pattern Search: Graphical Illustration of the
Example
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