Univariate Mixture of Normals: MCMC and EM algorithms

by Hedibert Freitas Lopes
Applied Econometrics, Spring 2005
Graduate School of Business
University of Chicago

The observations y_{1}, \ldots, y_{n} form a sample from the following finite mixture of normal distributions:

$$
p\left(y_{i} \mid \theta\right)=\sum_{j=1}^{k} w_{j} p_{N}\left(y_{i} \mid \mu_{j}, \sigma_{j}^{2}\right)
$$

where $\theta=\left(\mu, \sigma^{2}, w\right), \mu=\left(\mu_{1}, \ldots, \mu_{k}\right)^{\prime}, \sigma^{2}=\left(\sigma_{1}^{2}, \ldots, \sigma_{k}^{2}\right)^{\prime}, w=\left(w_{1}, \ldots, w_{k}\right)^{\prime}$, and and $p_{N}\left(y \mid \mu, \sigma^{2}\right)$ is the density of a normal distribution with mean μ and variance σ^{2} evaluated at y. Therefore,

$$
p(y \mid \theta)=\prod_{i=1}^{n}\left[\sum_{j=1}^{k} w_{j} p_{N}\left(y_{i} \mid \mu_{j}, \sigma_{j}^{2}\right)\right]
$$

Using latent indicators z_{1}, \ldots, z_{n}, such that $z_{i} \in\{1, \ldots, k\}$ and $p\left(z_{i}=j \mid \theta\right)=w_{j}$, the augmented model for (y, z) has the following joint density:

$$
p(y, z \mid \theta)=p(y \mid z, \theta) p(z \mid \theta)=\left[\prod_{j=1}^{k} \prod_{i \in I_{j}} p_{N}\left(y_{i} \mid \mu_{j}, \sigma_{j}^{2}\right)\right] \prod_{i=1}^{n} p\left(z_{i} \mid \theta\right)
$$

where $I_{j}=\left\{i: z_{i}=j\right\}$.

Bayesian Inference (MCMC)

The priors are $\mu_{j} \sim N\left(m, \tau \sigma_{j}^{2}\right), \sigma_{j}^{2} \sim I G(a / 2, b / 2), m \sim N\left(m_{0}, \tau_{m}\right), \tau \sim I G(c / 2, d / 2)$, and $w \sim D(\alpha)$, with $a, b, c, d, \mu_{0}, \tau_{m}$, and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)^{\prime}$, known hyperparameters. Let $n_{j}=\operatorname{card}\left(I_{j}\right), n_{j} \bar{y}_{j}=\sum_{i \in I_{j}} y_{i}$, and $n_{j} s_{j}^{2}=\sum_{i \in I_{j}}\left(y_{i}-\bar{y}_{j}\right)^{2}$. The full conditional distributions are as follows.

- $\left[\sigma_{j}^{2} \mid \mu, z, y\right] \sim I G\left(\frac{a+n_{j}+1}{2}, \frac{1}{2}\left[b+n_{j} s_{j}^{2}+n_{j}\left(\mu_{j}-\bar{y}_{j}\right)^{2}+\frac{1}{\tau}\left(\mu_{j}-m\right)^{2}\right]\right)$
- $\left[\mu_{j} \mid \sigma^{2}, m, \tau, z, y\right] \sim N\left(\frac{\tau n_{j} \bar{y}_{j}+m}{\tau n_{j}+1}, \frac{\tau \sigma_{j}^{2}}{\tau n_{j}+1}\right)$
- $\left[\tau \mid \sigma^{2}, \mu, m, y\right] \sim I G\left(\frac{c+k}{2}, \frac{1}{2}\left[d+\sum_{j=1}^{k} \frac{\left(\mu_{j}-m\right)^{2}}{\sigma_{j}^{2}}\right]\right)$
- $\left[z_{i}\right] \in\{1, \ldots, k\}$, with $p\left(z_{i}=j \mid \theta, y_{i}\right)=\frac{\omega_{j}}{\omega_{1}+\cdots+\omega_{k}}$ and $\omega_{l}=w_{l} p_{N}\left(y_{i} \mid \mu_{l}, \sigma_{l}^{2}\right)$ for $l=1, \ldots, k$.
- $\left[w \mid \mu, \sigma^{2}, z, y\right] \sim D(\alpha+n)$, where $n=\left(n_{1}, \ldots, n_{k}\right)$.
- $\left[m \mid \sigma^{2}, \tau, \mu\right] \sim N\left(\left(\tau_{m}^{-1}+\tau^{-1} \sum_{j=1}^{k} \sigma_{j}^{-2}\right)\left(\tau_{m}^{-1} m_{0}+\tau^{-2} \sum_{j=1}^{k} \sigma_{j}^{-2} \mu_{j}\right),\left(\tau_{m}+\tau^{-1} \sum_{j=1}^{k} \sigma_{j}^{-2}\right)\right)$

Maximum Likelihood Inference (EM)

The Expectation-Maximization (EM) algorithm finds $\hat{\theta}$ that maximizes the (incomplete) log-likelihood, ie.

$$
\hat{\theta} \equiv \arg \max _{\theta} l(\theta \mid y)
$$

where

$$
l(\theta \mid y)=\sum_{i=1}^{n} \log \left[\sum_{j=1}^{k} w_{j}\left(2 \pi \sigma_{j}^{2}\right)^{-1 / 2} \exp \left\{\frac{1}{2 \sigma_{j}^{2}}\left(y_{i}-\mu_{j}\right)^{2}\right\}\right]
$$

by iteratively cycling through the following two steps:

- E-step: Compute the integral $Q\left(\theta, \theta^{(l)}\right)=\int \log \{p(y, z \mid \theta)\} p\left(z \mid y, \theta^{(l)}\right) d z$
- M-step: Find $\theta^{(l+1)}$ such that $\theta^{(l+1)}=\arg \max _{\theta} Q\left(\theta, \theta^{(l)}\right)$

The EM algorithm for the mixture of normal model case, with $\theta^{(0)}$ as starting value, cycles through $l=$ $1, \ldots, L$ as follows.

For $i=1, \ldots, n$ and $j=1, \ldots, k$ compute

$$
\delta_{i j}=p\left(z_{i}=j \mid y_{i}, \theta^{(l)}\right)=\frac{w_{j}^{(l)} p_{N}\left(y_{i} \mid \mu_{j}^{(l)}, \sigma_{j}^{2(l)}\right)}{p\left(y_{i} \mid \theta^{(l)}\right)}
$$

For $j=1, \ldots, k$, compute

$$
\begin{aligned}
w_{j}^{(l+1)} & =n^{-1} \sum_{i=1}^{n} \delta_{i j} \\
\mu_{j}^{(l+1)} & =\frac{\sum_{i=1}^{n} y_{i} \delta_{i j}}{n w_{j}^{(l+1)}} \\
\sigma_{j}^{2(l+1)} & =\frac{\sum_{i=1}^{n}\left(y_{i}-\mu_{j}^{(l)}\right)^{2} \delta_{i j}}{n w_{j}^{(l+1)}}
\end{aligned}
$$

It can be shown that the sequence $\left\{\theta^{(1)}, \theta^{(2)}, \ldots\right\}$ converges to $\hat{\theta}=\arg \max _{\theta} l(\theta \mid y)$ as $l \rightarrow \infty$ (for more details about the EM algorithm, see Dempster, Laird and Rubin, 1977).

References (chronological order)

- Dempster, Laird and Rubin (1977) Maximum likelihood from incomplete data via the EM algorithm, JRSS-B, 39, 1-38.
- Titterington, Smith and Makov (1984) Statistical Analysis of Finite Mixture Distributions, New York: Wiley.
- Roeder (1990) Density estimation with confidence sets exemplified by superclusters and voids in the galaxies, JASA,85,617-624.
- Crawford (1994) An application of the Laplace method to finite mixture distributions, JASA,89, 259267.
- Chib (1995) Marginal likelihood from the Gibbs output, JASA,90,1313-1321.
- Carlin and Chib (1995) Bayesian model choice via Markov chain Monte Carlo methods, JRSS-B,473484
- Escobar and West (1995) Bayesian density estimation and inference using mixtures, JASA,90,577-588.
- Phillips and Smith (1996) Bayesian model comparison with jump diffusions, in Markov Chain Monte Carlo in Practice (eds Gilks, Richardson and Spiegelhalter), chapter 13, pp. 215-239. London: Chapman and Hall.
- Richardson and Green (1997) On Bayesian analysis of mixtures with an unknown number of components (with discussion), JRSS-B, 59, 731-792.
- Stephens (2000) Dealing with label switching in mixture models, JRSS-B, 62, 795-809.
- Stephens (2000) Bayesian analysis of mixtures with an unknown number of components: an alternative to reversible jump methods. Annals of Statistics, 28.

