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1 IEOR 6712: Notes on Brownian Motion I

We present an introduction to Brownian motion, an important continuous-time stochastic pro-
cess that serves as a continuous-time analog to the simple symmetric random walk on the one
hand, and shares fundamental properties with the Poisson counting process on the other hand.

Throughout, we use the following notation for the real numbers, the non-negative real
numbers, the integers, and the non-negative integers respectively:

IR def= (−∞,∞) (1)

IR+
def= [0,∞) (2)

Z def= {· · · ,−2,−1, 0, 1, 2, · · ·} (3)

IN def= {0, 1, 2, · · ·}. (4)

1.1 Normal distribution

Of particular importance in our study is the normal distribution, N(μ, σ2), with mean −∞ <
μ < ∞ and variance 0 < σ2 < ∞; the density and cdf are given by

f(x) =
1

σ
√

2π
e

−(x−μ)2

2σ2 , x ∈ IR, (5)

F (x) =
1

σ
√

2π

∫ x

−∞
e

−(y−μ)2

2σ2 dy, x ∈ IR. (6)

When μ = 0 and σ2 = 1 we obtain the standard (or unit) normal distribution, N(0, 1), and
the density and cdf reduce to

θ(x) def=
1√
2π

e
−x2

2 , (7)

Θ(x) def=
1√
2π

∫ x

−∞
e

−y2

2 dy. (8)

As we shall see over and over again in our study of Brownian motion, one of its nice features
is that many computations involving it are based on evaluating Θ(x), and hence are computa-
tionally elementary.

If Y ∼ N(0, 1), then X = σY +μ has the N(μ, σ2) distribution. Conversely, if X ∼ N(μ, σ2),
then Y = (X − μ)/σ has the standard normal distribution.

It thus follows that that if X ∼ N(μ, σ2), then F (x) = P (X ≤ x) = Θ((x − μ)/σ).
Letting X ∼ N(μ, σ2), the moment generating function of the normal distribution is given

by

M(s) = E(esX)

=
∫ ∞

−∞
esxf(x)dx

= esμ+s2σ2/2, −∞ < s < ∞. (9)
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The normal distribution is also called the Gaussian distribution after the famous German
mathematician and physicist Carl Friedrich Gauss (1777 - 1855).

1.1.1 Central limit theorem (CLT)

Theorem 1.1 If {Xi : i ≥ 1} are iid with finite mean E(X) = μ and finite non-zero variance
σ2 = V ar(X), then

Zn
def=

1
σ
√

n

( n∑
i=1

Xi − nμ
)

=⇒ N(0, 1), n → ∞, in distribution;

limn→∞ P (Zn ≤ x) = Θ(x), x ∈ IR.

If μ = 0 and σ2 = 1, then the CLT becomes

1√
n

n∑
i=1

Xi =⇒ N(0, 1).

1.2 Construction of Brownian motion from the simple symmetric random
walk

Recall the simple symmetric random walk, R0 = 0,

Rn = Δ1 + · · · + Δn, n ≥ 1,

where the Δi are iid with P (Δ = −1) = P (Δ = 1) = 0.5.
We view time n in minutes, and Rn as the position at time n of a particle, moving on IR,

which every minute takes a step, of size 1, equally likley to be forwards or backwards. Because
E(Δ) = 0 and V ar(Δ) = 1, it follows that E(Rn) = 0 and V ar(Rn) = n, n ≥ 0.

Choosing a large integer k > 1, if we instead make the particle take a step every 1/k minutes
and make the step size 1/

√
k, then by time t the particle will have taken a large number, n = tk,

of steps and its position will be

Bk(t) =
1√
k

tk∑
i=1

Δi. (10)

(By convention if tk is not an integer then we replace it by the largest integer less than or equal
to it; [tk].) This leads to the particle taking many many iid steps, but each of small magnitude,
in any given interval of time. We expect that as k → ∞, these small steps become a continuum
and the process {Bk(t) : t ≥ 0} should converge to a process {B(t) : t ≥ 0} with continuous
sample paths. We call this process Brownian motion (BM) after the Scottish botanist Robert
Brown.1 Its properties will be derived next.

Notice that for fixed k, any increment

Bk(t) − Bk(s) =
1√
k

tk∑
i=sk

Δi, 0 ≤ s < t,

1Brown himself noticed in 1827, while carrying out some experiments, the unusual “motion” of particles within
pollen grains suspended in water, under his microscope. The physical cause of such motion (bombardment of the
particles by water molecules undergoing thermal motion) was not formalized via kinetic theory until Einstein in
1905. The rigorous mathematical construction of a stochastic process as a model for such motion is due to the
mathematician Norbert Weiner; that is why it is sometimes called a Weiner process.
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has a distribution that only depends on the length, t − s, of the time interval (s, t] because it
only depends on the number, k(t − s), of iid Δi making up its construction. Thus we deduce
that the limiting process will possess stationary increments.

Notice further that given two non-overlapping time intervals, (t1, t2] and (t3, t4], the corre-
sponding increments

Bk(t4) − Bk(t3) =
1√
k

t4k∑
i=t3k

Δi, (11)

Bk(t2) − Bk(t1) =
1√
k

t2k∑
i=t1k

Δi, (12)

are independent because they are constructed from different Δi. Thus we deduce that the
limiting process will also possess independent increments.

Observing that E(Bk(t)) = 0 and V ar(Bk(t)) = [tk]/k → t, k → ∞, we infer that the
limiting process will satisfy E(B(t)) = 0, V ar(B(t)) = t just like the random walk {Rn} does
in discrete-time n (E(Rn) = 0, V ar(Rn) = n).

Finally, a direct application of the CLT yields (via setting n = tk)

Bk(t) =
√

t
( 1√

kt

tk∑
i=1

Δi

)
=⇒ N(0, t), k → ∞, in distribution,

and we conclude that for each fixed t > 0, B(t) has a normal distribution with mean 0 and
variance t. Similarly, using the stationary and independent increments property, we conclude
that B(t)−B(s) has a normal distribution with mean 0 and variance t− s, and more generally:

the limiting BM process is a process with continuous sample paths that has both
stationary and independent normally distributed (Gaussian) increments: If t0 =
0 < t1 < t2 < · · · < tn, then the rvs. B(ti)−B(ti−1), i ∈ {1, . . . n}, are independent
with B(ti) − B(ti−1) ∼ N(0, ti − ti−1).

If we define X(t) = σB(t) + μt, then X(t) ∼ N(μt, σ2t), σ ∈ IR+, μ ∈ IR, and we obtain,
by such scaling and translation, more generally, a process with stationary and independent
increments in which X(t) − X(s) has a normal distribution with mean μ(t − s) and variance
σ2(t − s).

When σ2 = 1 and μ = 0 (as in our construction) the process is called standard Brownian
motion, and denoted by {B(t) : t ≥ 0}. Otherwise, it is called Brownian motion with variance
σ2 and drift μ.

Definition 1.1 A stochastic process B = {B(t) : t ≥ 0} possessing (wp1) continuous sample
paths is called standard Brownian motion if

1. B(0) = 0.

2. B has both stationary and independent increments.

3. B(t) − B(s) has a normal distribution with mean 0 and variance t − s, 0 ≤ s < t.

For Brownian motion with variance σ2 and drift μ, X(t) = σB(t) + μt, the definition is the
same except that 3 must be modified;

X(t) − X(s) has a normal distribution with mean μ(t − s) and variance σ2(t − s).
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Remark 1.1 It can in fact be proved that Condition 3 above is redundant: a stochastic process
with stationary and independent increments that possesses (wp1) continuous sample paths must
be Brownian motion, that is, the increments must be normally distributed. This is analogous
to the Poisson counting process which is the unique simple counting process that has both
stationary and independent increments: the stationary and independent increments property
forces the increments to be Poisson distributed. (Simple means that the arrival times of the
underlying point process are strictly increasing; no batches.)

Donsker’s theorem

Our construction of Brownian motion as a limit is in fact a rigorous one, but requires more
advanced mathetical tools (beyond the scope of these lecture notes) in order to state it precisely
and to prove it. Suffice to say, the stochastic process {Bk(t) : t ≥ 0} as defined by (10) converges
in distribution (weak convergence in path (function) space), as k → ∞, to Brownian motion
{B(t) : t ≥ 0}. This is known as Donsker’s theorem or the functional central limit theorem.
The point is that it is a generalization of the central limit theorem, because it involves an entire
stochastic process (with all its multi-dimensional joint distributions, for example) as opposed
to just a one-dimensional limit such as (for fixed t > 0) Bk(t) → N(0, t) in distribution.

1.3 BM as a Gaussian process

We observe that the vector (B(t1), . . . , B(tn)) has a multivariate normal distribution because
the event

{B(t1) = x1, . . . , B(tn) = xn}
can be re-written in terms of independent increment events

{B(t1) = x1, B(t2) − B(t1) = x2 − x1, . . . , B(tn) − B(tn−1) = xn − xn},

yielding the joint density of (B(t1), . . . , B(tn)) as

f(x1, . . . , xn) = ft1(x1)ft2−t1(x2 − x1) · · · ftn−tn−1(xn),

where
ft(x) =

1√
2πt

e
−x2

2t

is the density for the N(0, t) distribution.
The finite dimensional distributions of BM are thus multivariate normal, or Gaussian, and

BM is an example of a Gaussian process, that is, a process with continuous sample paths
in which the finite dimensional distributions are multivariate normal, that is, for any fixed
choice of n time points 0 ≤ t1 < t2 < · · · < tn, n ≥ 1, the joint distribution of the vector
(X(t1), . . . , X(tn)) is multivariate normal.

Since a multivariate normal distribution is completely determined by its mean and covari-
ance parameters, we conclude that a Gaussian process is completely determined by its mean
and covariance function m(t) def= E(X(t)), a(s, t) def= cov(X(s), X(t)), 0 ≤ s ≤ t.

For standard BM, m(t) = 0 and a(s, t) = s:

cov(B(s), B(t)) = cov(B(s), B(s) + B(t) − B(s))
= cov(B(s), B(s)) + cov(B(s), B(t) − B(s))
= var(B(s)) + 0 (via independent increments)
= s.
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Thus standard BM is the unique Gaussian process with m(t) = 0 and a(s, t) = min{s, t}.
Similarly, BM with variance σ2 and drift μ, X(t) = σB(t) + μt, is the unique Gaussian process
with m(t) = μt and a(s, t) = σ2 min{s, t}.

1.4 Levy Processes

BM shares something special with the Poisson counting process {N(t)}; both have stationary
and independent increments. But they differ significantly in other ways: while BM has con-
tinuous sample paths, the sample paths of N(t) have discontinuities (jumps) of size 1. A Levy
process is a stochastic process with both stationary and independent increments. It turns out
that BM is the unique Levy process with continuous sample paths, and the Poisson counting
process is the unique Levy process which is a counting process with jumps of size 1. There exist
many other Levy processes too, and the key to understanding them involves infinitely divisible
distributions.

A distribution F is called infinitely divisible if for any n ≥ 1 (no matter how large), F can
be expressed as the nth-fold convolution G∗n = G∗ · · · ∗G of some distribution G (that depends
on n). In terms of random variables this means that if X has an infinitely divisible distribution,
then for each n ≥ 1, X has representation X = Y1 + · · ·+ Yn for some iid rvs. {Yi : 1 ≤ i ≤ n}.

Both the Poisson and Gaussian distributions are infinitely divisible:

N(μ, σ2) = N(μ/n, σ2/n) ∗ · · · ∗ N(μ/n, σ2/n),
Poisson(λ) = Poisson(λ/n) ∗ · · · ∗ Poisson(λ/n).

Notice how G is the same kind of distribution as the original but with scaled down parameters.
If {X(t) : t ≥ 0} is a Levy process, then it follows that X(t) (for each t > 0) has an infinitely

divisible distribution because X(t) = Y1 + · · · + Yn, where Yi = X(it/n) − X((i − 1)t/n), 1 ≤
i ≤ n. Conversely, if F is an infinitely divisible distribution, then it can be proved that there
exists a Levy process for which X(1) ∼ F . An easy way of constructing infinitely divisible
distributions is by taking the convolution of two known ones. For example, Poisson(λ)∗N(μ, σ2)
is infinitely divisible. Another important Levy process is the compound Poisson process, in
which starting with a Posson counting process N(t) at rate λ, the jump sizes, instead of being
of size 1, are allowed to be iid with a general distrubution. Letting {Ji} be iid with distribution
H(x) = P (J ≤ x), x ∈ IR, and independent of {N(t)},

X(t) def=
N(t)∑
i=1

Ji

yields such a Levy process, and E(X(t)) = λE(J). Compound Poisson processes are very
useful in the modeling of queues and insurance risk businesses; X(t) can denote the total
amount of work that arrived to the queue by time t, or the total claim damages incurred by
the insurance business by time t. The underlying infinitely divisible distribution of any Levy
process is given by the moment generating function M1(s) = E(esX(1)), if it exists (otherwise
one uses the characteristic function, E(eisX(1)) where i =

√
−1). A Levy process then has the

nice characterizing property that

Mt(s)
def= E(esX(t)) = (M1(s))t, t ≥ 0.

Examples

1. Poisson counting process at rate λ:
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Recalling that E(esX) = eα(es−1) if X is Poisson with mean α; we have
Mt(s) = E(esN(t))
= eλt(es−1)

=
(
eλ(es−1)

)t

= (M1(s))t.

2. Compound Poisson process:

Letting H̃(s) = E(esJ) denote the moment generating function of the jump size distribu-
tion H(x) = P (J ≤ x), conditioning on N(t) = n yields

Mt(s) = E
(
e
s

(∑N(t)

i=1
Ji

))

= eλt(H̃(s)−1)

=
(
eλ(H̃(s)−1)

)t
= (M1(s))t.

3. BM:
For X(t) = σB(t) + μt,
Mt(s) = E(esX(t))

= eμst+σ2s2t
2

=
(
eμs+σ2s2

2

)t

= (M1(s))t.

For standard BM this reduces to

Mt(s) = e
s2t
2 .

Another nice example of an infinitely divisible distribution is the gamma distribution.

1.5 BM as a Markov Processes

If B is standard BM, then the independent increments property implies that B(s+ t) = B(s)+
(B(s + t) − B(s)), in which B(s) and (B(s + t) − B(s)) are independent. The independent
increments property implies further that (B(s + t) − B(s)) is also independent of the past
before time s, {B(u) : 0 ≤ u < s}.

Thus the future, B(s+t), given the present state, B(s), only depends on a rv, B(s+t)−B(s),
that is independent of the past. Thus we conclude that BM satisfies the Markov property. Since
the increments are also stationary, we conclude that BM is a time-homogenous Markov process.

Letting p(x, t, y) denote the probability density function for B(s + t) given B(s) = x, we
see, from B(s + t) = x + (B(s + t)−B(s)), that p(x, t, y) is the density for x + B(s + t)−B(s).
But x + B(s + t) − B(s) = y if and only if (B(s + t) − B(s)) = y − x, yielding

p(x, t, y) = ft(y − x) =
1√
2πt

e
−(y−x)2

2t . (13)

More generally, X(t) = σB(t) + μt is a Markov process with

p(x, t, y) =
1

σ
√

2πt
e

−((y−x−μt)2

2σ2t . (14)
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1.6 BM as a martingale

Standard BM is a martingale:

E(B(t + s)|B(u) : 0 ≤ u ≤ s) = B(s), t ≥ 0, s ≥ 0,

which asserts that the conditional expectation of BM at any time in the future after time s
equals the original value at time s. This of course follows from the independent increments
property and using B(s + t) = B(s) + (B(s + t) − B(s)):

E(B(t + s)|B(u) : 0 ≤ u ≤ s) = E(B(t + s)|B(s)), via the Markov property
= E(B(s) + (B(s + t) − B(s))|B(s))
= B(s) + E(B(s + t) − B(s)|B(s))
= B(s) + E(B(s + t) − B(s)), via independent increments
= B(s) + 0
= B(s).

A martingale captures the notion of a fair game, in that regardless of your current and past
fortunes, your expected fortune at any time in the future is the same as your current fortune:
on average, you neither win nor lose any money.

The simple symetric random walk is a martingale (and a Markov chain) in discrete time;

E(Rn+k|Rn, . . . , R0) = E(Rn+k|Rn) = Rn, k ≥ 0, n ≥ 0,

because

Rn+k = Rn +
k∑

i=1

Δn+i,

and
∑k

i=1 Δn+i is independent of Rn (and the past before time n) and has mean 0.

1.7 Hitting times for standard BM

Consider
τ = min{t ≥ 0 : B(t) /∈ (a,−b)},

the first time that BM hits either a or −b.2
Recall from the gambler’s ruin problem that for the simple symmetric random walk {Rn},

pa = b
a+b , where a > 0, b > 0 (integers), and pa denotes the probability that the random walk

starting at R0 = 0 first hits a before hitting −b;

τ = min{n ≥ 0 : Rn ∈ {a,−b}|R0 = 0},

and pa = P (Rτ = a). Thus pa denotes the probability that Rn goes up a steps before going
down b steps.

For the process {Bk(t) : t ≥ 0} to hit a before −b would require the random walk

R(k)
n =

1√
k

n∑
i=1

Δi, n ≥ 0

2The contiuity of sample paths implies that B(t) either hits a or hits −b (e.g, there is no overshoot).
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to hit a before −b. This would require (approximately) that R
(k)
n goes up a

√
k steps before

going down b
√

k steps; yielding the same answer

pa =
b
√

k

a
√

k + b
√

k
=

b

a + b
.

We thus deduce (via letting k → ∞) that the same holds for standard BM (where a and b
need not be integers now). Letting pa = P (B(τ) = a), where
τ = min{t ≥ 0 : B(t) ∈ {a,−b} | B(0) = 0}, we state this as

Proposition 1.1 For standard BM, the probability that a is first hit before hitting −b is given
by

pa =
b

a + b
, a > 0, b > 0.

Proof : A rigorous proof is provided by the optional stopping theorem for martingales:
E(B(τ)) = E(B(0)) = 0 implies that aPa − b(1 − pa) = 0; solving yields pa = b

a+b .
UI of the stopped MG B(t∧τ) follows since it is bounded between −b and a, thus justifying

the use of the optional stopping theorem.

Proposition 1.2 For standard BM, if τ = min{t ≥ 0 : B(t) ∈ {a,−b}|B(0) = 0}, then

E(τ) = ab.

Note that if a variance term is introduced, σB(t), σ > 0, then σB(t) ∈ {a,−b} if and only if
B(t) ∈ {a/σ,−b/σ} yielding E(τ) = ab

σ2 .

Proof : Here we use optional stopping on the the MG B2(t) − t yielding E(B2(τ)) = E(τ),
or E(τ) = a2pa + b2(1 − pa) = ab, where we use the fact that pa = b

a+b . UI holds via: The
stopped process X(t) = B2(τ ∧ t) − τ ∧ t is a MG, so E(X(t)) = 0 for all t; E(τ ∧ t) =
E(B2(τ ∧ t)) ≤ (a + b)2 < ∞. But τ ∧ t is monotone increasing to τ and non-negative, so
by the monotone convergence theorem we conclude that E(τ) ≤ (a + b)2 < ∞; τ ∈ L1. Thus
|X(t)| ≤ B2(τ ∧ t)+ τ ∧ t ≤ (a+ b)2 + τ , and since we have just shown that τ ∈ L1, we conclude
that {X(t)} is UI.

Now let Tx = min{t ≥ 0 : B(t) = x | B(0) = 0}, the hitting time to x > 0. From our study
of the simple symmetric random walk, we expect P (Tx < ∞) = 1, but E(Tx) = ∞: although
any level x will be hit with certainty, the mean length of time required is infinite. We will prove
this directly and derive the cdf P (Tx ≤ t), t ≥ 0 along the way.

The key to our analysis is based on a simple observation involving the symmetry of standard
BM: If Tx < t, then B(s) = x for some s < t. Thus the value of B(t) is determined by where the
BM went in the remaining t − s units of time after hitting x. But BM, having stationary and
independent Gaussian increments, will continue having them after hitting x. So by symmetry
(about x), the path of BM during the time interval (s, t] with B(s) = x is just as likely to
lead to B(t) > x as to B(t) < x. So the events {B(t) > x| Tx ≤ t} and {B(t) < x| Tx ≤ t}
are equally likely; both have probability 1/2. (P (B(t) = x) = 0 since B(t) has a continuous
distribution.) To be precise, if Tx = s < t, then B(t) = x+B(t)−B(s) which has the N(x, t−s)
distribution (which is symmetric about x). Thus P (B(t) > x | Tx ≤ t) = 1/2. On the other
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hand P (B(t) > x | Tx > t) = 0 because BM (having continuous sample paths) can not be above
x at time t if it never hit x prior to t. Summarizing yields

P (B(t) > x) = P (B(t) > x | Tx ≤ t)P (Tx ≤ t) + P (B(t) > x | Tx > t)P (Tx > t)
= P (B(t) > x | Tx ≤ t)P (Tx ≤ t) + 0

=
1
2
P (Tx ≤ t),

or
P (Tx ≤ t) = 2P (B(t) > x) =

2√
2πt

∫ ∞

x
e

−y2

2t dy,

because B(t) ∼ N(0, t). Changing variables u = y/
√

t then yields

Proposition 1.3 For standard BM, for any fixed x �= 0

P (Tx ≤ t) = 2P (B(t) > x) =
2√
2π

∫ ∞

x√
t

e
−y2

2 dy = 2(1 − Θ(x/
√

t)), t ≥ 0.

In particular Tx is a proper random variable; P (Tx < ∞) = 1.

P (Tx < ∞) = 1 because taking the limit as t → ∞ yields P (Tx < ∞) =
2(1 − Θ(0)) = 2(1 − 0.5) = 1.

Corollary 1.1 For standard BM, for any fixed x �= 0, E(Tx) = ∞.

Proof : We shall proceed by computing E(Tx) = ∞ by integrating the tail P (Tx > t);

E(Tx) =
∫ ∞

0
P (Tx > t)dt.

To this end, P (Tx > t) = 1−P (Tx ≤ t) = 2√
2π

∫ x√
t

0 e
−y2

2 dy. Since the constant factor 2√
2π

plays
no role in wether the integrated tail is infinite or finite, we leave it out for simplicity. It thus
suffices to show that ∫ ∞

0

∫ x√
t

0
e

−y2

2 dydt = ∞.

Changing the order of integration, we re-write as

∫ ∞

0

∫ x2

y2

0
e

−y2

2 dtdy = x2
∫ ∞

0

1
y2

e
−y2

2 dy

≥ x2
∫ 1

0

1
y2

e
−y2

2 dy

≥ x2e−1/2
∫ 1

0

1
y2

dy

= ∞.

The second inequality is due to the fact that the decreasing function e
−y2

2 is minimized over
the interval (0, 1] at the end point y = 1.

Let Mt
def= max0≤s≤t B(t) denote the maximum value of BM up to time t. Noting that

Mt ≥ x if and only if Tx ≤ t, we conclude that P (Mt ≥ x) = P (Tx ≤ t) yielding (from
Proposition 1.3) a formula for the distribution of Mt:
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Corollary 1.2 For standard BM, for any fixed t ≥ 0,

P (Mt > x) =
2√
2π

∫ ∞

x√
t

e
−y2

2 dy = 2(1 − Θ(x/
√

t)), x ≥ 0.

1.8 Hitting times for BM with drift

For X(t) = σB(t) + μt, let’s assume that μ < 0 so that the BM has negative drift. This is
analogous to the simple random walk with negative drift, that is, {Rn} when the increments
have distribution P (Δ = 1) = p, P (Δ = 1) = q = 1 − p and q > p. Recall from the gambler’s
ruin problem that in this case

pa =
1 − (p/q)b

(p/q)−a − (p/q)b
,

and thus by letting b → ∞ we obtain the probability that the random walk will ever exceed
level a;

P (max
n≥0

Rn ≥ a) = lim
b→∞

pb = (p/q)a.

We conclude that the maximum of the random walk has a geometric distribution with “success”
probability 1 − p/q. The point is that the negative drift random walk will eventually drift off
to −∞, but before it does there is a positive probability, (p/q)a, that it will first reach level
a > 0.

X(t) is similar. We let M = maxt≥0 X(t) denote the maximum of the BM:

Proposition 1.4 For BM with negative drift, X(t) = σB(t) + μt, μ < 0,

pa =
1 − e−αb

eαa − e−αb
,

where α = 2|μ|/σ2; thus (letting b → ∞)

P (M > a) = e−αa, a ≥ 0,

and we conclude that M has an exponential distribution with mean α−1 = σ2/2|μ|.
Note how α−1 decreases in |μ| and increases in σ2.

Proof :
Here we use an exponential martingale of the form

eλX(t)−(λμ+ 1
2
λ2σ2)t.

This is a MG for any value of λ. Choosing λ = α = −2μ/σ2 , so that the second term in the
exponent vanishes, we have the MG

U(t) = eαX(t).

Then for τ = min{t ≥ 0 : X(t) ∈ {a,−b}|X(0) = 0}, we use optional sampling to obtain
E(Y (τ)) = 1 or eαapa + e−αb(1 − pa); solving for pa yields the result. (U(t ∧ τ) is bounded
hence UI.)

We also have (proof will be given as a hmwk problem):

10



Proposition 1.5 For BM with drift, X(t) = σB(t) + μt, μ �= 0, if τ = min{t ≥ 0 : X(t) ∈
{a,−b}|X(0) = 0}, then

E(τ) =
a(1 − e

2μb

σ2 ) + b(1 − e
−2μa

σ2 )

μ(e
−2μa

σ2 − e
2μb

σ2 )

What about Tx? If the drift is negative, then we already know that for x > 0, the BM
might not ever hit x; P (Tx = ∞) = P (M < x) > 0. But if the drift is positive, x will be hit
with certainty (because this is so even when μ = 0; Proposition 1.3). In this case the mean is
finite (proof given as hmwk):

Proposition 1.6 For BM with positive drift,X(t) = σB(t) + μt, μ > 0, if Tx = min{t ≥ 0 :
X(t) = x|X(0) = 0}, then

E(Tx) =
x

μ
, x > 0.

Note how, as μ → 0, E(Tx) → ∞, and this agrees with our previous calculation (Corol-
lary 1.1) that E(Tx) = ∞ when μ = 0 (even though P (Tx < ∞) = 1).
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