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In survival analysis, the statistics involving the hazard functions are usually easier to han-
dle mathematically then those involving the distributions. For example, it is easier to show
the Nelson-Aalen estimator is an NPMLE of the cumulative hazard function compared to the
Kaplan-Meier estimator (which is an NPMLE of distribution function).

However, there is a catch: the hazard function Λ has two distinct pairs formula connecting
with the distribution function F , one for the continuous hazard, one for the discrete hazard.
The continuous version of empirical likelihood is also called the Poisson empirical likelihood; the
discrete version is also called the binomial empirical likelihood. The discrete version is a truly
likelihood, the continuous version is an approximation.

Discrete
∆Λ(t) =

∆F (t)
1− F (t−)

, and 1− F (t) =
∏
si≤t

[1−∆Λ(si)]

Continuous
Λ(t) = − log[1− F (t)] and 1− F (t) = exp[−Λ(t)]

Therefore there are two versions of everything related to hazard: two versions of empirical
likelihood, two versions of the null hypothesis. And later we will proof two versions of the
Empirical likelihood ratio Wilks theorem.

1 Hazard Empirical Likelihood: continuous version

Suppose that X1, X2, . . . , Xn are i.i.d. nonnegative random variables denoting the lifetimes
with a continuous distribution function F0 and cumulative hazard function Λ0(t). Independent
of the lifetimes there are censoring times C1, C2, . . . , Cn which are i.i.d. with a distribution G0.
Only the censored observations, (Ti, δi), are available to us:

Ti = min(Xi, Ci) and δi = I[Xi ≤ Ci] for i = 1, 2, . . . n.

For the empirical likelihood in terms of hazard, we use the Poisson extension of the likelihood
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(Murphy 1995), and it is defined as

EL(Λ) =
n∏

i=1

[∆Λ(Ti))]δi exp{−Λ(Ti)}

=
n∏

i=1

[∆Λ(Ti))]δi exp{−
∑

j:Tj≤Ti

∆Λ(Tj)}

where ∆Λ(t) = Λ(t+)− Λ(t−) is the jump of Λ at t.
Remark: The term exp(−Λ(Ti)) in the first line above has its origin in the continuous

formula, yet in the second line we assume a discrete Λ(·).
Let wi = ∆Λ(Ti) for i = 1, 2, . . . , n, where we notice wn = δn because the last jump of a

discrete cumulative hazard function must be one. The likelihood at this Λ can be written in
term of the jumps

EL =
n∏

i=1

[wi]δi exp{−
n∑

j=1

wjI[Tj ≤ Ti]} ,

and the log likelihood is

log EL =
n∑

i=1

δi log wi −
n∑

j=1

wjI[Tj ≤ Ti]

 .

If we max the log EL above (without constraint) we see that wi = δi
Ri

, where Ri =
∑

j I[Tj ≥
Ti]. This is the well known Nelson-Aalen estimator: ∆Λ̂NA(Ti) = δi

Ri
. If we define R(t) =∑

k I[Tk ≥ t] then Ri = R(Ti).
The first step in our analysis is to find a (discrete) cumulative hazard function that maximizes

the log EL(Λ) under the constraints (1):∫ ∞

0
g1(t)dΛ(t) = θ1∫ ∞

0
g2(t)dΛ(t) = θ2 (1)

· · · · · ·∫ ∞

0
gp(t)dΛ(t) = θp

where gi(t)(i = 1, 2, ..., p) are given functions satisfy some moment conditions (specify later),
and θi (i = 1, 2, ..., p) are given constants. The constraints (1) can be written as (for discrete
hazard)

n∑
i=1

g1(Ti)wi = θ1

n∑
i=1

g2(Ti)wi = θ2 (2)

· · · · · ·
n∑

i=1

gp(Ti)wi = θp .
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A similar argument as in Owen (1988) will show that we may restrict our attention in the EL
analysis to those discrete hazard functions that are dominated by Nelson-Aalen: Λ(t) � Λ̂NA(t).
[Owen 1988 restricted his attention to those distribution functions that F (t) � the empirical
distribution.]

Since for discrete hazard functions, the last jump must be one, this imply that wn = δn =
∆Λ̂NA(Tn) always. The next theorem gives the other jumps.

Theorem 1 If the constraints above are feasible (which means the maximum problem has a
hazard solution), then the maximum of log EL(Λ) under the constraint is obtained when

wi =
δi

Ri + nλT G(Ti)δi

=
δi

Ri
× 1

1 + λT (δiG(Ti)/(Ri/n))

= ∆Λ̂NA(Ti)
1

1 + λT Zi

where

G(Ti) = {g1(Ti), ..., gp(Ti)}T , Zi =
δiG(Ti)
Ri/n

= {Z1i, ..., Zpi}T for i = 1, 2, . . . , n.

and λ = {λ1, ..., λp}T is the solution of the following equations

n−1∑
i=1

1
n

Zki

1 + λT Zi
+ gk(Tn)δn = θk for k = 1, . . . , p . (3)

Proof. Use Lagrange Multiplier to find the constrained maximum of log EL. See Pan and Zhou
(2002) for details.

Similar to the proof in the paper, it can also be shown the following Wilks theorem hold.

Theorem 2 Let (T1, δ1), . . . , (Tn, δn) be n pairs of i.i.d. random variables as defined above.
Suppose gi i = 1, . . . , p are left continuous functions satisfy

0 <

∫ |gi(x)gj(x)|
(1− F0(x))(1−G0(x−))

dΛ(x) < ∞, all 1 ≤ i, j ≤ p. (4)

Furthermore, assume the matrix Σ, defined in the Lemma 2 below, is invertible.
Then, θ0 = {

∫
g1(t)dΛ(t), ...,

∫
gp(t)dΛ(t)}T will be a feasible vector with probability ap-

proaching one as n →∞ and

−2 log ELR(θ0)
D−→ χ2

(p) as n →∞

where log ELR(θ0) = max log EL(with constraints (2))− log EL(Λ̂NA).

Proof. Here we briefly outline the proof. The complete proof is just a multivariate version of Pan
and Zhou (2002). First, we need the following two lemmas. They are the Law of Large Numbers
and CLT for Nelson-Aalen estimator and can be proved via counting processes technique.
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Lemma 1 Under the assumption of Theorem 2, we have, for 1 ≤ k, r ≤ p

1
n

n∑
i=1

ZkiZri =
∫

gk(t)gr(t)
R(t)/n

dΛ̂NA(t) P−→
∫

gk(x)gr(x)
(1− F0(x))(1−G0(x−))

dΛ0(x)

as n →∞ where
R(t) =

∑
I[Ti≥t].

Lemma 2 Under the assumption of Theorem 2, we have

√
n(

1
n

n∑
i=1

Zi − θ0) =
√

n(
n∑

i=1

G(Ti)∆Λ̂NA(Ti)− θ0)
D−→ MV N(0,Σ),

as n →∞ where the limiting variance-covariance matrix is

Σkr =
∫

gk(x)gr(x)
(1− F0(x))(1−G0(x−))

dΛ0(x) for 1 ≤ k, r ≤ p; (5)

and
θ0 = {

∫
g1(t)dΛ0(t), · · · ,

∫
gp(t)dΛ0(t)}T .

We define the matrix A as below. Since A → Σ as n →∞ (Lemma 1) and we assumed Σ is
invertible and thus positive definite, we conclude that for large enough n the symmetric matrix
A is invertible. Next, we show the solution of λ to the constraint equations (3) is

λ = λ∗ = A−1b + op(n−1/2) (6)

where

Akr =
1
n

n∑
i=1

ZkiZri for 1 ≤ k, r ≤ p.

b = { 1
n

n∑
i=1

Z1i − θ1, · · · ,
1
n

n∑
i=1

Zpi − θp}T

This can be proved by an expansion of equation (3).
The stickier question is that why an expansion of (3) is valid and why the remainder term

is op(n−1/2). We deal with this in appendix.
Define

f(λ) = log EL(wi(λ)) =
n∑

i=1

δi log wi(λ)−
∑

j

wj(λ)I[Tj ≤ Ti]


and the test statistic −2 log ELR(θ0) can be expressed as

−2 log ELR = 2[f(0)− f(λ∗)] = 2[f(0)− f(0)− λ∗T f ′(0)− 1/2λ∗T f ′′(0)λ∗ + . . .].

Straight forward calculation show f ′(0) = 0 and f ′′(0) = A. Therefore

−2 log ELR = −λ∗T f ′′(0)λ∗ + . . . (7)
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simplify it to the following

−2 log ELR(θ0) = nbT A−1b + op(1)

Finally, by Lemma 1 and Lemma 2, we get

−2 log ELR(θ0)
D−→ χ2

(p) as n →∞ .
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Appendix. We now give a proof of the Lemma 1, ‘law of large number’ for the Zi or for
the integral of Nelson-Aalen estimator. The results is obviously true if we impose more moment
conditions. We, however, try to give a proof that only assume the finiteness of the limiting
integration and without the extra moment condition. Also, we allow the g(t) function to be a
random sequence of functions. Notice here the random variables Zi are not independent.

Lemma 1 Under assumptions below, for given k = 1, 2, · · · , p we have

1
n

n∑
i=1

Z2
ki =

∫
g2
k(t)

R(t)/n
dΛ̂NA(t) P−→

∫
g2
k(x)

(1− F0(x))(1−G0(x−))
dΛ0(x)

Assumptions: (We omit the subscript k. These conditions should hold for all k = 1, 2, · · · , p.
)

(1) The limit that you hope to converge to must be finite: i.e.
∫∞
0

g2(x)
(1−F0(x))(1−G0(x−))dΛ0(x) <

∞
(2) If we use gn(t) on the left side, then we need to assume: it converges uniformly in any

finite intervals, i.e. for any finite τ , supt<τ |gn(t)− g(t)| go to zero in probability and the ratio
supi |gn(Ti)/g(Ti)| is bounded in probability. These two conditions are satisfied by the empirical
distributions, the Kaplan-Meier estimator and the Nelson-Aalen estimator.

Notice in the CLT of the martingale (Lemma 2), we will further require that gn(t) be pre-
dictable functions.

Proof:
We first proof the LLN for

∫ τ
0 for any given finite τ .∫ τ

0

g2
n(t)

R(t)/n
dΛ̂(t) =

∑
i

I[Ti < τ ]
g2
n(Ti)

R(Ti)/n

∆N(Ti)
R(Ti)

(8)

Minus and plus the term (recall ∆N(Ti) = δi)

1
n

∑
i

I[Ti < τ ]
g2(Ti)

[1−H(Ti−)]2
δi

in the above, and regroup, we get

=
1
n

∑
i

I[Ti < τ ]δi

(
g2
n(Ti)

[R(Ti)/n]2
− g2(Ti)

[1−H(Ti−)]2

)
+

1
n

∑
i

I[Ti < τ ]
g2(Ti)δi

[1−H(Ti−)]2
(9)

The first term above is bounded by

1
n

∑
i

I[Ti < τ ]
∣∣∣∣ g2

n(Ti)
[R(Ti)/n]2

− g2(Ti)
[1−H(Ti−)]2

∣∣∣∣ δi ≤ sup
t<τ

∣∣∣∣ g2
n(t)

[R(t)/n]2
− g2(t)

[1−H(t−)]2

∣∣∣∣
The term inside the absolute sign is uniformly convergent to zero, by the assumption 2 on gn(t).
And it is well known that R(t)/n → [1−H(t−)] uniformly. Therefore the reciprocal of it is at
least uniformly convergent on t ≤ τ .
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The last term in (9) above is an iid sum with respect to (Ti, δi). By classic LLN, it converge
to its expectation, which is

E

(
I[Ti < τ ]

g2(Ti)δi

[1−H(Ti−)]2

)
=

∫ τ

0

g2(t)
1−H(t−)

dΛ0(t)

which by assumption 1 is finite. This proves that the Lemma holds for any finite τ .
We need to take care of the tail:

∫∞
τ . By assumption 1,∫ ∞

τ

g2(t)
1−H(t−)

dΛ0(t)

can be made arbitrary small by selecting a large τ . (say smaller than ε/C)
Since the ratio gn(Ti)/g(Ti) and [1 − H(Ti−)]/[R(Ti)/n] are both uniformly (in sup1≤i≤n)

bounded in probability (assumption 2, and property of empirical distribution function) we have,
that the term ∑

i

I[Ti ≥ τ ]
g2
n(Ti)

R(Ti)/n

∆N(Ti)
R(Ti)

is bounded in probability by

≤ C
1
n

∑
i

I[Ti ≥ τ ]
g2(Ti)δi

[1−H(Ti−)]2

This summation/average above converges to its mean (since it is an iid average)

C

∫ ∞

τ

g2(t)
1−H(t−)

dΛ0(t)

the absolute value of which, in turn, is smaller than the pre-selected ε. This finishes the proof.

Remark: For future work on the Edgeworth expansion/Bartlett correction, We need a LLN
like the above but with rates, for the Edgeworth analysis of the empirical likelihood. Under
suitable assumption, the following should be true (LIL):∫

g2(t)dΛ̂n(t)−
∫

g2(t)dΛ(t) = O(

√
log log n

n
) a.s.

or similar to lemma 1∫
g2(t)

R(t)/n
dΛ̂n(t)−

∫
g2(t)

1−H(t−)
dΛ(t) = O(

√
log log n

n
) a.s.

The proof of Lemma 2 is direct consequence of the martingale central limit theorem, See,
for example, Kalbfleisch and Prentice 2002 chapter 5, Theorem 5.1 in particular.

Remark: A better normal approximation for the martingales, which has Edgeworth expan-
sion, is given by Lai and Wang.

P (
√

n(Λ̂n(t)− Λ(t)) ≤ σz) = Φ(z)− n−1/2φ(z)P1(z)− n−1φ(z)P2(z) + o(n−1)
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Appendix. PROOF OF λ0 SMALL.
We give a proof that validates the expansion of (3). In other words, we show the solution of

(3) is small. We want to show λT Zi is small uniformly over i. We shall denote the solution as
λ0.

Lemma 3: Suppose Mn = op(n1/2), then we have

λn = Op(n−1/2) if and only if
|λn|

1 + |λnMn|
= Op(n−1/2) .

Proof: Homework.

Lemma 4: If X1, · · · , Xn are identically distributed, and E(X1)2 < ∞, then we have
Mn = max1≤i≤n |Xi| = op(n1/2).

Proof Since {Mn > a} = ∪{|Xi| > a}, we compute

P (Mn > n1/2) = P (
n⋃

i=1

(|Xi| > n1/2)) ≤
n∑

i=1

P (|Xi| > n1/2) .

By the identical distribution assumption,

= nP (|X1| > n1/2) = nP (X2
1 > n) .

Since EX2
1 < ∞, the right hand side above → 0 as n → ∞. Similar proof will show that, if

E|Xi|p < ∞ then Mn = op(n1/p).
Lemma 5: We compute

E
δig

2(Ti)
[1− F (Ti−)]2[1−G(Ti)]2

=
∫

g2(t)
[1− F (t−)][1−G(t)]

dΛ(t) .

Therefore if we assume
∫ g2(t)

[1−F (t−)][1−G(t)]dΛ0(t) < ∞ then

M∗
n = max

1≤i≤n

δi|g(Ti)|
[1− F (Ti−)][1−G(Ti)]

= op(n1/2)

by Lemma 4 and 5.
Now, using a theorem of Zhou (1992) we can replace the denominator of M∗

n by R(Ti)/n:

Mn = max
1≤i≤n

|Zi| = max
δi|g(Ti)|
Ri/n

≤ M∗
n max

i

[1− F (Ti)][1−G(Ti)]
Ri/n

= op(n1/2) .

Now we proceed: denote the solution by λ0. We notice that for all i, 1 + λT
0 Zi ≥ 0 since

the solution wi given in Theorem 1 must give rise to a legitimate jump of the hazard function,
which must be ≥ 0. Clearly wi ≥ 0 imply 1 + λT

0 Zi ≥ 0.
First we rewrite the equation (3) and notice that λ0 is the solution of the following equation

0 = l(η).

0 = l(λ0) = (θ0 −
1
n

∑
Zi) +

λ0

n

n−1∑
i=1

Z2
i

1 + λ0Zi
(10)

8



Therefore,

θ0 −
1
n

∑
Zi = − λ0

n

n−1∑
i=1

Z2
i

1 + λ0Zi
(11)

∣∣∣∣θ0 −
1
n

∑
Zi

∣∣∣∣ =
|λ0|
n

∣∣∣∣∣
n−1∑
i=1

Z2
i

1 + λ0Zi

∣∣∣∣∣ (12)

Since for every term (at least when δi = 1, or Z2
i > 0), Z2

i /(1 + λ0Zi) ≥ 0, therefore we have∣∣∣∣θ0 −
1
n

∑
Zi

∣∣∣∣ =
|λ0|
n

∑ Z2
i

|1 + λ0Zi|

Replace the denominators 1 + λ0Zi by its upper bound: for any i we have

|1 + λ0Zi| ≤ 1 + |λ0|Mn

we got a lower bound in the fraction∣∣∣∣θ0 −
1
n

∑
Zi

∣∣∣∣ ≥ |λ0|
1 + |λ0|Mn

1
n

n−1∑
i=1

Z2
i ≥ 0

Since θ0 − 1/n
∑

Zi = Op(n−1/2) (CLT, Lemma 2), We see that

|λ0|
1 + |λ0|Mn

1
n

∑
Z2

i = Op(n−1/2)

and obviously 1
n

∑
Z2

i = Op(1) (Lemma 1) thus we must have

|λ0|
1 + |λ0|Mn

= Op(n−1/2) .

By Lemma 3 above we must finally have λ0 = Op(n−1/2).
As a consequence, we also have λ0Mn = op(1) and thus λ0Zi = op(1) uniformly for all i.

Problem: Using the similar techniques to show that the empirical likelihood ratio under
sequence of local alternative hypothesis has a non-central chi squared distribution. (similar to
Owen 1988).
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The Poisson likelihood we defined in previous chapter has received some criticism. Since

we assumed a discrete hazard/distribution function but at the same time we used a formula

connecting the hazard and CDF that is only valid for the continuous case.

The discrepancy vanishes asymptotically but for finite samples, it is not an exact likelihood.

The ‘binomial’ likelihood we shall discuss here always strictly stick to a discrete CDF/hazard

function, and the likelihood is a true probability. However, the class of statistic/parameter we

shall be testing has a strange integrating format.

1 Censored Empirical Likelihood with (k > 1) Constraints, Bi-

nomial likelihood

We will first study the one sample case. The results extend straightforwardly to the two sample

situation in the next section.

1.1 One Sample Censored Empirical Likelihood

For n independent, identically distributed observations, X1, · · · , Xn, assume that the distribu-

tion of the Xi is Fx0(t), and the cumulative hazard function of Xi is Λx0(t). With right censoring,

we only observe

Ti = min(Xi, Ci) and δi = I[Xi≤Ci] (1)

where the Ci’s are the censoring times, assumed to be independent, identically distributed,

and independent of the Xi’s. Based on the censored observations, the log empirical likelihood

pertaining to a distribution Fx is

log EL(Fx) =
∑

i

[δi log ∆Fx(Ti) + (1− δi) log{1− Fx(Ti)}] . (2)

As shown in Pan and Zhou (2002), computations are much easier with the empirical likelihood

reformulated in terms of the corresponding (cumulative) hazard function. However, there are

different formula relating the CDF and the cumulative hazard function for discrete or continuous

cases. Since the maximization of the EL will force the distribution to be discrete (for example:

empirical distribution or the Kaplan-Meier) we shall use the discrete formula relating the F to

Λ. The equivalent hazard formulation of (2) will be denoted by log EL(Λx). Using the relations

∆Λ(t) =
∆F (t)

1− F (t−)
and 1− F (t) =

∏
s≤t

[1−∆Λ(s)]
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we can rewrite the empirical likelihood (Proof as homework) as follows. Denoting ∆Λ(Ti) = vi

the EL is given as follows:

log EL(Λx) =
∑

i

{di log vi + (Ri − di) log(1− vi)} (3)

where di =
∑n

j=1 I[Tj=ti]δj , Ri =
∑n

j=1 I[Tj≥ti], and ti are the ordered, distinct values of Ti. This

EL is called the binomial version of the hazard empirical likelihood. See, for example, Thomas

and Grunkemeier (1975) and Li (1995) for similar notation. Here, 0 < vi ≤ 1 are the discrete

hazards at ti. The maximization of (3) with respect to vi is known to be attained at the jumps

of the Nelson-Aalen estimator: vi = di/Ri. We further denote the maximum value achieved by

EL as EL(Λ̂NA). Notice the similarity of this likelihood to the likelihood of a binomial sample,

hence the name.

Let us consider a hypothesis testing problem for a k dimensional parameter θ = (θ1, · · · , θk)T

with θr =
∫

gr(t) log(1 − dΛx(t)), where the gr(t) are given nonnegative functions. See also

remark 1 after the theorem for the strange looking integration.

H0 : θ = µ vs. HA : θ 6= µ

where µ = (µ1, · · · , µk)T is a vector of k constants. The constraints we shall impose on the

discrete hazards vi are: for given functions g1(·), · · · , gk(·) and constants µ1, · · · , µk, we have

N−1∑
i

g1(ti) log(1− vi) = µ1 , · · · ,
N−1∑

i

gk(ti) log(1− vi) = µk , (4)

where N is the total number of distinct observation values. We need to exclude the last value

as we always have vN = 1 for discrete hazards. Let us abbreviate the maximum likelihood

estimators of ∆Λx(ti) under constraints (4) as v∗i . Application of the Lagrange multiplier method

shows

v∗i = vi(λ) =
di

Ri + nλT G(ti)
,

where G(ti) = {g1(ti), · · · , gk(ti)}T , and λ is the solution to (4) when replace vi by vi(λ) (Lemma

1 in the appendix).

Then, the likelihood ratio test statistic in terms of hazards is given by

W2 = −2{log maxEL(Λx)(with constraint (4))− log EL(Λ̂NA)} .
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We have the following result that is a version of Wilks’ theorem for W2 under some regularity

conditions which include the standard conditions on censoring that allow the Nelson-Aalen

estimators to have an asymptotic normal distribution (see, e.g., Gill, 1983; Andersen et al.,

1993). The proof of the following theorem, along with a detailed set of conditions, is provided

in the appendix.

Theorem 1. Suppose that the null hypothesis H0 holds, i.e. µr =
∫

gr(t) log{1− dΛx(t)}, r =

1, . . . , k. Then, under conditions specified in the appendix, the test statistic W2 has asymptoti-

cally a chi-squared distribution with k degrees of freedom.

Remark 1 The integration constraints are originally given as θr =
∫

gr(t)d log{1 − Fx(t)},

r = 1, · · · , k. (but this is not in terms of the hazard). The above formulation is found by using

the identity d log{1 − F (t)} = log{1 − dΛ(t)} which holds for both continuous and discrete

F (t). Again, the point t where F (t) = 1 have to be excluded from the integration.

Remark 2: If the functions gr(t) are random but predictable with respect to the filtration

Ft = σ{TiI[Ti≤t]; δiI[Ti≤t]; i = 1, . . . , n}, then Theorem 1 is still valid (see the appendix for

details).

Remark 3: One of the conditions for Theorem 1 is that the matrix Σ defined in Lemma

2 in appendix is invertible. If Σ is not invertible, then the k constraints may have redundancy

within, in which case we may handle it by using the theory of over-determined EL.

1.2 Two Sample Censored Empirical Likelihood

Suppose that in addition to the censored sample of X-observations, we have a second sample

Y1, · · · , Ym coming from a distribution function Fy0(t) with a cumulative hazard function Λy0(t).

Assume that the Yj ’s are independent of the Xi’s. With censoring, we can only observe

Uj = min(Yj , Sj) and τj = I[Yj≤Sj ] (5)

where the Sj ’s are the censoring variables for the second sample. Denote the ordered, distinct

values of the Uj by sj .

Similar to (3), the log empirical likelihood function based on the two censored samples
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pertaining to cumulative hazard functions Λx and Λy is simply log EL(Λx,Λy) = L1 +L2 where

L1 =
∑

i

d1i log vi +
∑

i

(R1i − d1i) log(1− vi) and

L2 =
∑

j

d2j log wj +
∑

j

(R2j − d2j) log(1− wj), (6)

with d1i, R1i, d2j and R2j defined analogous to the one sample situation (see p. 3). Accordingly,

let us consider a hypothesis testing problem for a k dimensional parameter θ = (θ1, · · · , θk)T

with respect to the cumulative hazard functions Λx and Λy such that

H0 : θ = µ vs. HA : θ 6= µ,

where θr =
∫

g1r(t) log{1−dΛx(t)}−
∫

g2r(t) log{1−dΛy(t)}, r = 1, · · · , k, for some predictable

functions g1r(t) and g2r(t). Then, the constraints imposed on vi and wj are

µr =
N−1∑
i=1

g1r(ti) log(1− vi)−
M−1∑
j=1

g2r(sj) log(1− wj), r = 1, . . . , k, (7)

where N and M are the total numbers of distinct observation values in the two samples. As in

the one sample case, we need to exclude the last value in each sample.

Let us abbreviate the maximum likelihood estimators of ∆Λx(ti) and ∆Λy(sj) under the

constraints (7) as v∗i and w∗
j , respectively, where i = 1, · · · , N and j = 1, · · · ,M . Application

of the Lagrange multiplier method shows

v∗i = vi(λ) =
d1i

R1i + min(n, m)λT G1(ti)
, w∗

j = wj(λ) =
d2j

R2j −min(n, m)λT G2(sj)
,

where G1(ti) = {g11(ti), · · · , g1k(ti)}T , G2(sj) = {g21(sj), · · · , g2k(sj)}T , and λ is the solution

to (7) when we plug in the v∗i and w∗
j . Then, the two-sample test statistic is given as follows:

W ∗
2 = −2{log maxEL(Λx,Λy)(with constraint (7))− log EL(Λ̂NA

x , Λ̂NA
y )} ,

analogous to the one-sample case. The following theorem provides the asymptotic distribution

result for W ∗
2 . The proof can be found in the appendix.

Theorem 2. Suppose that the null hypothesis H0 : θr = µr holds. i.e. µr =
∫

g1r(t) log{1 −

dΛx(t)} −
∫

g2r(t) log{1 − dΛy(t)}, r = 1, . . . , k. Then, as min(n, m) → ∞ and n/m → c ∈

(0,∞), W ∗
2 has asymptotically a chi-squared distribution with k degrees of freedom.
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Remark: The two-sample setup we studies in this section took a particularly simple form:

the difference of two parameters. For more involved parameters, we may not be able to write it

as a simple difference. For example a two sample U statistics: θ =
∫ ∫

g(s, t)dΛx(s)dΛy(t). For

the analysis of those, please see Barton (2010) and the R package emplik2.
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A Appendix

Assumptions for Theorem 1

Let X1, · · · , Xn be independent, identically distributed random variables with cumulative

distribution function Fx0(t) and cumulative hazard function Λx0(t). We observe Ti = min(Xi, Ci)

and δi = I[Xi≤Ci], where the Ci are independent, identically distributed censoring times, inde-

pendent of the Xi. The cumulative distribution function of the Ci is Fc(t). The distribution

functions Fx0(t) and Fc(t) do not have common discontinuities.

Let g1(t), . . . , gk(t) be non-negative left continuous functions with

0 <

∫
|gr(t)|2(1−∆Λx0(t))

(1− Fx0(t))(1− Fc(t))
dΛx0(t) < ∞, r = 1, . . . , k. (9)

This condition guarantees asymptotic normality of the Nelson-Aalen estimator (cf. Theorem

2.1 in Gill, 1983). Note that the factor (1 − ∆Λx0(t)) is only needed for discrete distri-

butions. It equals 1 when Fx0 is absolutely continuous. Also, under the above condition,

µr =
∫

gr(t) log(1−dΛx0(t)) is feasible with probability approaching 1 as n →∞. Note that the

functions gr(t) may be random, but they have to be predictable with respect to the filtration

Ft = σ{TiI[Ti≤t]; δiI[Ti≤t]; i = 1, . . . , n} which makes Λ̂NA(t) − Λx0(t) a martingale, so that

the martingale central limit theorem can be applied. Here, Λ̂NA(t) denotes the Nelson-Aalen

estimator of hazard function. Furthermore, if the functions gr(t) are random, we require that

there are non-random left continuous functions gr0(t) such that sup
t≤Tn

|gr(t)− gr0(t)| = op(1) and

sup
t≤Tn

| gr(t)
gr0(t) | = Op(1) for r = 1, . . . , k as n →∞.

Remark: The strength of the above assumption (9) is quite weak. This assumption is

apparently of the same strength as the condition Akritas (2000) put on the mean function.

Akritas was considering the CLT for
∫

φ(t)dF (t) and requires
∫

φ2(t)dF (t)/[1 − G(t−)] < ∞.

If we put g(t) = [1 − F (t)]φ(t), then our condition (9) above is the same as Akritas condition.

Why g(t) = [1 − F (t)]φ(t) is the connection? See Akritas and some more discussions in tech

report.

Mathematical Derivations and Proofs for Theorem 1

Recall the column vectors G(t) = {g1(t), · · · , gk(t)}T and λ = {λ1, · · · , λk}T .
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Lemma 1. The hazards that maximize the log likelihood function (3) under the constraints (4)

are given by

vi(λ) =
di

Ri + nλT G(ti)
, (10)

where λ is obtained as the solution of the following k equations.

N−1∑
i

g1(ti) log{1− vi(λ)} = µ1 , · · · ,

N−1∑
i

gk(ti) log{1− vi(λ)} = µk . (11)

Proof of Lemma 1. The result follows from a standard Lagrange multiplier argument applied

to (3) and (4). See Fang and Zhou (2000) for some similar calculations. ♦.

We denote the solution of (11) by λx.

Lemma 2. Assume the data are such that the Nelson-Aalen estimator is asymptotically normal

and the variance-covariance matrix Σ defined below (p. 12) is invertible. Then, for the solution

λx of the constrained problem (11), corresponding to the null hypothesis H0 : µr =
∫

gr(t) log{1−

dΛx0(t)}, r = 1, . . . , k, we have that n1/2λx converges in distribution to N(0,Σ).

Preparation for the proofs of Lemma 2 and Theorem 1.

Let

f(λ) =
∑

[di log vi(λ) + (Ri − di) log{1− vi(λ)}] . (12)

In order to show that f ′(0) = 0, we compute

∂

∂λr
f(λ) =

∑
i

di

vi(λ)
∂vi(λ)
∂λr

− (Ri − di)
vi(λ)

∂(1− vi(λ))
∂λr

, r = 1, . . . , k.

Letting λ = 0, and after some simplification, we have

∂

∂λr
f(λ)|λ=0 = −

∑
i

(Ri −Ri)
dingr(ti)

R2
i

≡ 0 .

We now compute f ′′(0) =
∑

. The rlth element of the k × k matrix
∑

is

Drl =
∂2

∂λr∂λl
f(λ)|λ=0 .

After straightforward but tedious calculations, we obtain

Drl = −

{∑
i

n2grgl

Ri

di

Ri − di

}
.
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By a now standard counting process martingale argument, we see that −Drl/n converges almost

surely to D∗
rl.

Proof of Lemma 2. We derive the asymptotic distribution of λ. The argument is similar

to, for example, Owen (1990) and Pan and Zhou (2002). Define a vector function h(s) =

{h1(s), · · · , hk(s)}T by

h1(s) =
∑

i

g1(ti) log{1− vi(s)} − µ1 , · · · , hk(s) =
∑

i

gk(ti) log{1− vi(s)} − µk . (13)

Then, λ is the solution of h(s) = 0. Thus, we have

0 = h(λ) = h(0) + h′(0)λ + op(n−1/2) , (14)

where h′(0) is a k × k matrix.

Indeed, if we write λ = ρ · λ̃, where ‖λ̃‖ = 1, then

0 = λ̃T h(λ) =
∑

i

λ̃T G(ti) log{1− vi(s)} − λ̃T µ =
∑

i

λ̃T G(ti) log{1− di

Ri + nλT G(ti)
} − λ̃T µ

=
( ∑

i

λ̃T G(ti) log(1− di

Ri
)− λ̃T µ

)
+

∑
i

λ̃T G(ti) log
[1− di/{Ri + nλT G(ti)}

1− di/Ri

]
= A + B ,

where the first expression A is of order Op(n−1/2). Considering the second expression, and

noting that for any pair of numbers ε1, ε2 ∈ (0, 1], the inequality |ε1 − ε2| ≤ | log(ε1)− log(ε2)|

holds, we have

|B| = |
∑

i

λ̃T G(ti) log
[1− di/{Ri + nλT G(ti)}

1− di/Ri

]
|

≥ |
∑

i

λ̃T G(ti)
nρG(ti)T λ̃di

Ri(Ri + nρλ̃T G(ti))
|

≥ |ρ|
1 + n|ρ|maxi |λ̃T G(ti)/Ri|

∑
i

(λ̃T G(ti))2ndi

R2
i

The sum in the last expression is of order Op(1), and under assumption (9), the maximum in the

denominator is of order op(n1/2). Therefore, |ρ| is of order Op(n−1/2), and hence, the expansion

(14) is valid.

Therefore,

n1/2λ = {h′(0)}−1{−n1/2h(0)}+ op(1) .

11



The elements of h′(0) are easily computed:

h′rl =
∑

i

ngrgldi

Ri(Ri − di)
.

Notice that we have verified nh′rl = −Drl. By the counting process martingale central limit

theorem (see, for example, Gill, 1980; Andersen et al., 1993; or Fang and Zhou, 2000), we can

show that n1/2h(0) converges in distribution to N(0,Σh) with Σh = lim h′(0).

Finally, putting it together, we have that n1/2λ(0) = {h′(0)}−1{−n1/2h(0)}+op(1) converges

in distribution to N(0,Σ) with Σ = lim{h′(0)}−1. Recalling nh′rl = −Drl, we see that Σ−1 = D∗.

♦

Proof of Theorem 1. Let f(λ) be defined as in (12). Then, we have W2 = −2{f(λx)−f(0)} .

By Taylor expansion, we obtain

W2 = 2{f(0)− f(0)− f ′(0)λx −
1
2
λT

x Dλx + op(1)}, (15)

where we use D to denote the matrix of second derivatives of f(·) with respect to λ. The

expansion is valid in view of Lemma 2 (λx is close to zero).

Since we have f ′(0) = 0 (see above), the expression above is reduced to

W2 = −λT
x Dλx + op(1) . (16)

Notice that −D is symmetric and positive definite for large enough n because −D/n con-

verges to a positive definite matrix, see below. Therefore, we may write

W2 = λT
x (−D)1/2(−D)1/2λx + op(1) . (17)

Recalling the distributional result for λx in Lemma 2 and noticing that −D/n converges

almost surely to D∗, and D∗ = Σ−1 (see above in the proof of Lemma 2), it is not hard to show

that n1/2λT
x (D1/2n−1/2) converges in distribution to N(0, I) . This together with (16) implies

that W2 converges in distribution to χ2
k . ♦

About feasibility: Clearly when λ = 0 all the vi’s are between 0 and 1 or equivalently,

µNPMLE is feasible. For the constraint imposed by a true H0, as show above we have the order

λx = Op(n−1/2). This imply nλT G = Op(n1/2). Notice R(t) = Op(n), so as n → ∞ we always

have 0 < di/(R + nλG) < 1, or that a true null hypothesis is feasible.

Assumptions for Theorem 2
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Let X1, · · · , Xn be independent, identically distributed random variables with cumulative

distribution function Fx0(t) and cumulative hazard function Λx0(t). We observe Ti = min(Xi, Ci)

and δi = I[Xi≤Ci], where the Ci are independent, identically distributed censoring times, inde-

pendent of the Xi. The cumulative distribution function of the Ci is Fc(t). The distribution

functions Fx0(t) and Fc(t) do not have common discontinuities. Further, let Y1, · · · , Ym be inde-

pendent, identically distributed random variables with cumulative distribution function Fy0(t)

and cumulative hazard function Λy0(t). We observe Uj = min(Yj , Sj) and τj = I[Yj≤Sj ], where

the Sj are independent, identically distributed censoring times, independent of the Yj . The

cumulative distribution function of the Sj is Fs(t). The distribution functions Fy0(t) and Fs(t)

do not have common discontinuities. The (Yj , Sj) are independent of the (Xi, Ci).

Let g1r(t) and g2r(t), r = 1, . . . , k, be non-negative left continuous functions with

0 <

∫
|g1r(t)|2(1−∆Λx0(t))
(1− Fx0(t))(1− Fc(t))

dΛx0(t) < ∞, r = 1, . . . , k, and

0 <

∫ |g2r(t)|2(1−∆Λy0(t))
(1− Fy0(t))(1− Fs(t))

dΛy0(t) < ∞, r = 1, . . . , k.

The functions glr(t), l = 1, 2, r = 1, . . . , k, may be random, but they have to be predictable

with respect to the filtration Ft = σ{TiI[Ti≤t]; δiI[Ti≤t]; UjI[Uj≤t]; τjI[Uj≤t]; i = 1, . . . , n; j =

1, . . . ,m}. Furthermore, if the functions glr(t) are random, we require that there are non-random

left continuous functions glr0(t) such that sup
t≤Vn

|glr(t)− glr0(t)| = op(1) and sup
t≤Vn

| glr(t)
glr0(t) | = Op(1)

for r = 1, . . . , k as min(m,n) →∞. Here Vn = min(maxTi,max Uj).

Mathematical Derivations and Proofs for Theorem 2

The proof of Theorem 2 is very similar to the one for the one-sample situation. In the

two-sample case, the constraints are defined by

µr =
N−1∑
i=1

g1r(ti) log(1− vi)−
M−1∑
j=1

g2r(sj) log(1− wj), r = 1, . . . , k.

Define G1(ti) = {g11(ti), · · · , g1k(ti)}T and G2(sj) = {g21(sj), · · · , g2k(sj)}T . The vector λxy

is the solution to maximizing log EL(Λx,Λy) = L1 + L2 under the above constraints. Similar

to Lemma 1, application of the Lagrange multiplier method yields the maximum likelihood

estimators

vi(λ) =
d1i

R1i + min(n, m)λT
xyG1(ti)

and wj(λxy) =
d2j

R2j −min(n, m)λT
xyG2(sj)

.
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In the two-sample situation, the function f(λ) defined in (12) becomes

f(λ) =
∑

[d1i log vi(λ) + (R1i − d1i) log{1− vi(λ)}]+
∑

[d2j log wj(λ) + (R2j − d2j) log{1− wj(λ)}] .

The same calculation as above (see p. 10) yields f ′(0) = 0 and f ′′(0) =
∑

where the rlth

element of the k × k matrix
∑

is

Drl = −

∑
i

n2g1rg1l

R1i

d1i

R1i − d1i
+

∑
j

m2g2rg2l

R2j

d2j

R2j − d2j

 .

Since we assume that n/m → c ∈ (0,∞) as min(m,n) → ∞, we have again that −Drl/n

converges almost surely to D∗∗
rl .

In order to show the asymptotic normality of n1/2λxy, we proceed analogous to the proof of

Lemma 2. Define h(u) = {h1(u), · · · , hk(u)}T , where

hr(u) =
∑

i

g1r(ti) log{1− vi(u)} −
∑

j

g2r(sj) log{1− wj(u)} − µr , r = 1, . . . , k,

let λxy = ρ · λ̃, where ‖λ̃‖ = 1, and notice that

0 = λ̃T h(λ) = A + B,

where A =
∑

i

λ̃T G1(ti) log{1− d1i

R1i
} −

∑
j

λ̃T G2(sj) log{1− d2j

R2j
} − λ̃T µ = Op(n−1/2)

and B =
∑

i

λ̃T G1(ti) log
[1− d1i/{R1i + min(m,n)ρλ̃T G1(ti)}

1− d1i/R1i

]
−

∑
j

λ̃T G2(sj) log
[1− d2j/{R2j + min(m,n)ρλ̃T G2(sj)}

1− d2j/R2j

]
.

A similar calculation as in the proof of Lemma 2 yields

|B| ≥ |ρ|
1 + n|ρ| · |max

(
maxi(λ̃T G(ti)/R1i),maxj(λ̃T G(sj)/R2j)

)
|

×
( ∑

i

(λ̃T G(ti))2nd1i

R2
1i

+
∑

j

(λ̃T G(sj))2nd2j

R2
2j

)
.

Again, the sum in the last expression is of order Op(1), and |ρ| is therefore of order Op(n−1/2).

Thus, the expansion 0 = h(λxy) = h(0) + h′(0)λxy + op(n−1/2) is valid, where h′(0) is a k × k
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matrix. Application of the counting process martingale central limit theorem shows that n1/2λxy

converges to N(0,Σ) with Σ = lim{h′(0)}−1.

The final step in the proof of Theorem 2 is a Taylor expansion of W ∗
2 = −2

(
f(λxy)− f(0)

)
as

W ∗
2 = −2

(
f ′(0)λxy +

1
2
λT

xyDλxy

)
+ op(1) = λT

xy(−D)1/2(−D)1/2λxy + op(1) ,

and noticing that λT
xy(−D)1/2 converges in distribution to N(0, I).
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