
The Poisson likelihood we defined in previous section has received some criticism. Since

we assumed a discrete hazard/distribution function but at the same time we used a formula

connecting the hazard and CDF that is only valid for the continuous case.

This do not matter asymptotically but for finite samples, it is not an exact likelihood.

The ‘binomial’ likelihood we shall discuss here always strictly stick to a discrete CDF/hazard

function, and the likelihood is a true probability.

However, the class of statistic we shall be testing has a bit strange integrating format.

1 Censored Empirical Likelihood with (k > 1) Constraints, Bi-

nomial likelihood

We will first study the one sample case. The results extend straightforwardly to the two sample

situation in the next section.

1.1 One Sample Censored Empirical Likelihood

For n independent, identically distributed observations, X1, · · · , Xn, assume that the distribu-

tion of the Xi is Fx0(t), and the cumulative hazard function of Xi is Λx0(t). With right censoring,

we only observe

Ti = min(Xi, Ci) and δi = I[Xi≤Ci] (1)

where the Ci’s are the censoring times, assumed to be independent, identically distributed,

and independent of the Xi’s. Based on the censored observations, the log empirical likelihood

pertaining to a distribution Fx is

log EL(Fx) =
∑

i

[δi log ∆Fx(Ti) + (1− δi) log{1− Fx(Ti)}] . (2)

As shown in Pan and Zhou (2002), computations are much easier with the empirical likelihood

reformulated in terms of the corresponding (cumulative) hazard function. However, there are

different formula relating the CDF and the cumulative hazard function for discrete or continuous

functions. Since the maximization of the El will force the distribution to be discrete (empirical

distribution or the Kaplan-Meier) we shall use the discrete formula relating the F to Λ. The

equivalent hazard formulation of (2) will be denoted by log EL(Λx). Using the relations

∆Λ(t) =
∆F (t)

1− F (t−)
and 1− F (t) =

∏
s≤t

[1−∆Λ(s)]
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we can rewrite the empirical likelihood (Proof as homework). Denoting ∆Λ(Ti) = vi the EL is

given as follows:

log EL(Λx) =
∑

i

{di log vi + (Ri − di) log(1− vi)} (3)

where di =
∑n

j=1 I[Tj=ti]δj , Ri =
∑n

j=1 I[Tj≥ti], and ti are the ordered, distinct values of Ti. This

EL is called the binomial version of the hazard empirical likelihood. See, for example, Thomas

and Grunkemeier (1975) and Li (1995) for similar notation. Here, 0 < vi ≤ 1 are the discrete

hazards at ti. The maximization of (3) with respect to vi is known to be attained at the jumps

of the Nelson-Aalen estimator: vi = di/Ri. We further denote the maximum value achieved by

EL as EL(Λ̂NA).

Let us consider a hypothesis testing problem for a k dimensional parameter θ = (θ1, · · · , θk)T

with θr =
∫

gr(t) log(1− dΛx(t)), where the gr(t) are given nonnegative functions.

H0 : θ = µ vs. HA : θ 6= µ

where µ = (µ1, · · · , µk)T is a vector of k constants. We note that the θr are linear functionals

of the cumulative hazard function. The constraints we shall impose on the hazards vi are: for

given functions g1(·), · · · , gk(·) and constants µ1, · · · , µk, we have

N−1∑
i

g1(ti) log(1− vi) = µ1 , · · · ,
N−1∑

i

gk(ti) log(1− vi) = µk , (4)

where N is the total number of distinct observation values. We need to exclude the last value

as we always have vN = 1 for discrete hazards. Let us abbreviate the maximum likelihood

estimators of ∆Λx(ti) under constraints (4) as v∗i . Application of the Lagrange multiplier method

shows

v∗i = vi(λ) =
di

Ri + nλT G(ti)
,

where G(ti) = {g1(ti), · · · , gk(ti)}T , and λ is the solution to (4) when replace vi by vi(λ) (Lemma

1 in the appendix).

Then, the likelihood ratio test statistic in terms of hazards is given by

W2 = −2{log maxEL(Λx)(with constraint (4))− log EL(Λ̂NA)} .

We have the following result that is a version of Wilks’ theorem for W2 under some regularity

conditions which include the standard conditions on censoring that allow the Nelson-Aalen
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estimators to have an asymptotic normal distribution (see, e.g., Gill, 1983; Andersen et al.,

1993). The proof of the following theorem, along with a detailed set of conditions, is provided

in the appendix.

Theorem 1. Suppose that the null hypothesis H0 holds, i.e. µr =
∫

gr(t) log{1− dΛx(t)}, r =

1, . . . , k. Then, under conditions specified in the appendix, the test statistic W2 has asymptoti-

cally a chi-squared distribution with k degrees of freedom.

Remark 1 The integration constraints are originally given as θr =
∫

gr(t)d log{1 − Fx(t)},

r = 1, · · · , k. (but this is not interms of the hazard). The above formulation is found by using

the identity d log{1−F (t)} = log{1−dΛ(t)} which holds for both continuous and discrete F (t).

Remark 2: If the functions gr(t) are random but predictable with respect to the filtration

Ft = σ{TiI[Ti≤t]; δiI[Ti≤t]; i = 1, . . . , n}, then Theorem 1 is still valid (see the appendix for

details).

Remark 3: One of the conditions for Theorem 1 is that the matrix Σ defined in Lemma

2 in appendix is invertible. If Σ is not invertible, then the k constraints may have redundancy

within, in which case we may handle it by using the theory of over-determined EL.

1.2 Two Sample Censored Empirical Likelihood

Suppose that in addition to the censored sample of X-observations, we have a second sample

Y1, · · · , Ym coming from a distribution function Fy0(t) with a cumulative hazard function Λy0(t).

Assume that the Yj ’s are independent of the Xi’s. With censoring, we can only observe

Uj = min(Yj , Sj) and τj = I[Yj≤Sj ] (5)

where the Sj ’s are the censoring variables for the second sample. Denote the ordered, distinct

values of the Uj by sj .

Similar to (3), the log empirical likelihood function based on the two censored samples

pertaining to cumulative hazard functions Λx and Λy is simply log EL(Λx,Λy) = L1 +L2 where

L1 =
∑

i

d1i log vi +
∑

i

(R1i − d1i) log(1− vi) and

L2 =
∑

j

d2j log wj +
∑

j

(R2j − d2j) log(1− wj), (6)
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with d1i, R1i, d2j and R2j defined analogous to the one sample situation (see p. 2). Accordingly,

let us consider a hypothesis testing problem for a k dimensional parameter θ = (θ1, · · · , θk)T

with respect to the cumulative hazard functions Λx and Λy such that

H0 : θ = µ vs. HA : θ 6= µ,

where θr =
∫

g1r(t) log{1−dΛx(t)}−
∫

g2r(t) log{1−dΛy(t)}, r = 1, · · · , k, for some predictable

functions g1r(t) and g2r(t). Then, the constraints imposed on vi and wj are

µr =
N−1∑
i=1

g1r(ti) log(1− vi)−
M−1∑
j=1

g2r(sj) log(1− wj), r = 1, . . . , k, (7)

where N and M are the total numbers of distinct observation values in the two samples. As in

the one sample case, we need to exclude the last value in each sample.

Let us abbreviate the maximum likelihood estimators of ∆Λx(ti) and ∆Λy(sj) under the

constraints (7) as v∗i and w∗
j , respectively, where i = 1, · · · , N and j = 1, · · · ,M . Application

of the Lagrange multiplier method shows

v∗i = vi(λ) =
d1i

R1i + min(n, m)λT G1(ti)
, w∗

j = wj(λ) =
d2j

R2j −min(n, m)λT G2(sj)
,

where G1(ti) = {g11(ti), · · · , g1k(ti)}T , G2(sj) = {g21(sj), · · · , g2k(sj)}T , and λ is the solution

to maximizing log EL(Λx,Λy) = L1 + L2 under the constraints in (7). Then, the two-sample

test statistic is given as follows:

W ∗
2 = −2{log maxEL(Λx,Λy)(with constraint (7))− log maxEL(Λx,Λy)(without constraint) ,

analogous to the one-sample case. The following theorem provides the asymptotic distribution

result for W ∗
2 . The proof can be found in the appendix.

Theorem 2. Suppose that the null hypothesis H0 : θr = µr holds. i.e. µr =
∫

g1r(t) log{1 −

dΛx(t)} −
∫

g2r(t) log{1 − dΛy(t)}, r = 1, . . . , k. Then, as min(n, m) → ∞ and n/m → c ∈

(0,∞), W ∗
2 has asymptotically a chi-squared distribution with k degrees of freedom.

2 Examples and Simulations

We provide Monte Carlo simulation results that empirically confirm the chi-squared limiting

distributions of W2 and W ∗
2 . Simulation study 3 compares the small and moderate sample size
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behaviors of the proposed combined test with other existing procedures for a hypothesis test

of two-sample survival data. Two real data examples are provided to illustrate the proposed

method for combining the log-rank and Gehan-Wilcoxon tests for one and two samples. We

present R code for the real data Example 2 in the appendix. All the computations have been

carried out using version 0.9-1 of the ‘emplik’ package in R.

Simulation 1

This simulation study examines the distribution of W2 when the constraints are non-random

functions such that g1(t) = exp(−t), g2(t) = 1
2 t · I[t≤1], and g3(t) = I[t≤0.9]. We use the following

distributions to generate the random variables.

X ∼ exp(1) , C ∼ exp(0.5), (8)

and the censored observations are created via (1). The Q-Q plot (Figure 1) is based on 5,000

runs. The distribution of W2 agrees well with the theoretically derived χ2
3-distribution.

Simulation 2

This simulation study examines the distribution of W ∗
2 where the constraints are random func-

tions. We choose random functions corresponding to the test statistics of the log-rank and

Gehan-Wilcoxon tests and obtain the value of W ∗
2 as described in Section ??. We also examine

the size of the such combined test of the log-rank and Gehan-Wilcoxon tests. In each of 10,000

runs, two identically distributed equal sized random samples are generated from the simulation

setup in (8). Figure ?? confirms that the distribution of W ∗
2 agrees well with χ2

2. The distribu-

tion deviates in the tail area when the sample sizes are n = m = 30, but the deviation is in the

extreme end of the tail, above the 99th percentile (the higher horizontal line) of the theoretical

χ2-distribution. Results in Table 1 agree: the proposed combined test attains the type I error

at the nominal levels.

Example 1. Iowa Psychiatric Patient Data

We apply the combined test of the log-rank and Gehan-Wilcoxon tests to a sample of survival

times of 26 psychiatric inpatients to compare with the survival time distribution of the general

population in Iowa. The data is part of a larger study of psychiatric inpatients admitted to the

University of Iowa hospital during the years 1935-1948 (for more information on the data, see

Tsuang and Woolson, 1977). Klein and Moeschberger (1997, p. 189) use the data to illustrate

the one-sample log-rank test. The test statistics of the log-rank and Gehan-Wilcoxon tests are

adjusted to accommodate the delayed entries and used as gr(t), r = 1, 2, as in (??). When
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applied individually, the log-rank and Gehan-Wilcoxon tests both reject the null with p-values

< 0.001 and 0.0432. The combined test statistic reaches the same conclusion with the p-value

0.00088.

Example 2. Kidney Dialysis Patient Data

We apply the combined test of the log-rank and Gehan-Wilcoxon tests to re-analyze the kidney

dialysis data of Klein and Moeschberger (1997, p. 197). The test statistics of the log-rank and

Gehan-Wilcoxon tests are used as g11 = g21 and g12 = g22 as in (??). Out of a total of 119

patients, 43 had a catheter surgically placed and 76 percutaneously (for a detailed description

of the data, see Nahman et al., 1992). The plot of the estimated survival functions (Figure

??) shows that the curves cross each other at about 6 months and suggests that the survival

experience of the two groups is different. However, as indicated in the introduction, the log-rank

test and its weighted versions make different decisions. Both the log-rank and Gehan-Wilcoxon

tests, two of the most popular ones, fail to reject the null hypothesis with p-values 0.1032 and

0.9603 respectively, while tests of the Gρ,γ family with emphasis on the later time period reject

the null. Electing to apply such a Gρ,γ family class test, though, is usually a post hoc decision.

When our proposed method of combining the tests is applied, it rejects the null with a p-value

of 0.0013. This indicates that the combined test can be much more powerful than either one of

the individual tests. R code for this example is included in the appendix.

A Appendix

Appendix 1

Assumptions for Theorem 1

Let X1, · · · , Xn be independent, identically distributed random variables with cumulative

distribution function Fx0(t) and cumulative hazard function Λx0(t). We observe Ti = min(Xi, Ci)

and δi = I[Xi≤Ci], where the Ci are independent, identically distributed censoring times, inde-

pendent of the Xi. The cumulative distribution function of the Ci is Fc(t). The distribution

functions Fx0(t) and Fc(t) do not have common discontinuities.

Let g1(t), . . . , gk(t) be non-negative left continuous functions with

0 <

∫
|gr(t)|w(1−∆Λx0(t))
(1− Fx0(t))(1− Fc(t))

dΛx0(t) < ∞, w = 1, 2; r = 1, . . . , k. (9)
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This condition guarantees asymptotic normality of the Nelson-Aalen estimator (cf. Theorem

2.1 in Gill, 1983). Note that the factor (1 − ∆Λx0(t)) is only needed for discrete distri-

butions. It equals 1 when Fx0 is absolutely continuous. Also, under the above condition,

µr =
∫

gr(t) log(1−dΛx0(t)) is feasible with probability approaching 1 as n →∞. Note that the

functions gr(t) may be random, but they have to be predictable with respect to the filtration

Ft = σ{TiI[Ti≤t]; δiI[Ti≤t]; i = 1, . . . , n} which makes Λ̂NA(t) − Λx0(t) a martingale, so that

the martingale central limit theorem can be applied. Here, Λ̂NA(t) denotes the Nelson-Aalen

estimator of hazard function. Furthermore, if the functions gr(t) are random, we require that

there are non-random left continuous functions gr0(t) such that sup
t≤Tn

|gr(t)− gr0(t)| = op(1) and

sup
t≤Tn

| gr(t)
gr0(t) | = Op(1) for r = 1, . . . , k as n →∞.

Mathematical Derivations and Proofs for Theorem 1

Recall the column vectors G(t) = {g1(t), · · · , gk(t)}T and λ = {λ1, · · · , λk}T .

Lemma 1. The hazards that maximize the log likelihood function (3) under the constraints (4)

are given by

vi(λ) =
di

Ri + nλT G(ti)
, (10)

where λ is obtained as the solution of the following k equations.

N−1∑
i

g1(ti) log{1− vi(λ)} = µ1 , · · · ,
N−1∑

i

gk(ti) log{1− vi(λ)} = µk . (11)

Proof of Lemma 1. The result follows from a standard Lagrange multiplier argument applied

to (3) and (4). See Fang and Zhou (2000) for some similar calculations. ♦.

We denote the solution of (11) by λx.

Lemma 2. Assume the data are such that the Nelson-Aalen estimator is asymptotically normal

and the variance-covariance matrix Σ defined below (p. 9) is invertible. Then, for the solution λx

of the constrained problem (11), corresponding to the null hypothesis H0 : µr =
∫

gr(t) log{1−

dΛx0(t)}, r = 1, . . . , k, we have that n1/2λx converges in distribution to N(0,Σ).

Preparation for the proofs of Lemma 2 and Theorem 1.

Let

f(λ) =
∑

[di log vi(λ) + (Ri − di) log{1− vi(λ)}] . (12)
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In order to show that f ′(0) = 0, we compute

∂

∂λr
f(λ) =

∑
i

di

vi(λ)
∂vi(λ)
∂λr

− (Ri − di)
vi(λ)

∂(1− vi(λ))
∂λr

, r = 1, . . . , k.

Letting λ = 0, and after some simplification, we have

∂

∂λr
f(λ)|λ=0 = −

∑
i

(Ri −Ri)
dingr(ti)

R2
i

≡ 0 .

We now compute f ′′(0) =
∑

. The rlth element of the k × k matrix
∑

is

Drl =
∂2

∂λr∂λl
f(λ)|λ=0 .

After straightforward but tedious calculations, we obtain

Drl = −

{∑
i

n2grgl

Ri

di

Ri − di

}
.

By a now standard counting process martingale argument, we see that −Drl/n converges almost

surely to D∗
rl.

Proof of Lemma 2. We derive the asymptotic distribution of λ. The argument is similar

to, for example, Owen (1990) and Pan and Zhou (2002). Define a vector function h(s) =

{h1(s), · · · , hk(s)}T by

h1(s) =
∑

i

g1(ti) log{1− vi(s)} − µ1 , · · · , hk(s) =
∑

i

gk(ti) log{1− vi(s)} − µk . (13)

Then, λ is the solution of h(s) = 0. Thus, we have

0 = h(λ) = h(0) + h′(0)λ + op(n−1/2) , (14)

where h′(0) is a k × k matrix.

Indeed, if we write λ = ρ · λ̃, where ‖λ̃‖ = 1, then

0 = λ̃T h(λ) =
∑

i

λ̃T G(ti) log{1− vi(s)} − λ̃T µ =
∑

i

λ̃T G(ti) log{1− di

Ri + nλT G(ti)
} − λ̃T µ

=
( ∑

i

λ̃T G(ti) log(1− di

Ri
)− λ̃T µ

)
+

∑
i

λ̃T G(ti) log
[1− di/{Ri + nλT G(ti)}

1− di/Ri

]
= A + B ,
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where the first expression A is of order Op(n−1/2). Considering the second expression, and

noting that for any pair of numbers ε1, ε2 ∈ (0, 1], the inequality |ε1 − ε2| ≤ | log(ε1)− log(ε2)|

holds, we have

|B| = |
∑

i

λ̃T G(ti) log
[1− di/{Ri + nλT G(ti)}

1− di/Ri

]
|

≥ |
∑

i

λ̃T G(ti)
nρG(ti)T λ̃di

Ri(Ri + nρλ̃T G(ti))
|

≥ |ρ|
1 + n|ρ|maxi |λ̃T G(ti)/Ri|

∑
i

(λ̃T G(ti))2ndi

R2
i

The sum in the last expression is of order Op(1), and under assumption (9), the maximum in the

denominator is of order op(n1/2). Therefore, |ρ| is of order Op(n−1/2), and hence, the expansion

(14) is valid.

Therefore,

n1/2λ = {h′(0)}−1{−n1/2h(0)}+ op(1) .

The elements of h′(0) are easily computed:

h′rl =
∑

i

ngrgldi

Ri(Ri − di)
.

Notice that we have verified nh′rl = −Drl. By the counting process martingale central limit

theorem (see, for example, Gill, 1980; Andersen et al., 1993; or Fang and Zhou, 2000), we can

show that n1/2h(0) converges in distribution to N(0,Σh) with Σh = lim h′(0).

Finally, putting it together, we have that n1/2λ(0) = {h′(0)}−1{−n1/2h(0)}+op(1) converges

in distribution to N(0,Σ) with Σ = lim{h′(0)}−1. Recalling nh′rl = −Drl, we see that Σ−1 = D∗.

♦

Proof of Theorem 1. Let f(λ) be defined as in (12). Then, we have W2 = −2{f(λx)−f(0)} .

By Taylor expansion, we obtain

W2 = 2{f(0)− f(0)− f ′(0)λx −
1
2
λT

x Dλx + op(1)}, (15)

where we use D to denote the matrix of second derivatives of f(·) with respect to λ. The

expansion is valid in view of Lemma 2 (λx is close to zero).

Since we have f ′(0) = 0 (see above), the expression above is reduced to

W2 = −λT
x Dλx + op(1) . (16)
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Notice that −D is symmetric and positive definite for large enough n because −D/n con-

verges to a positive definite matrix, see below. Therefore, we may write

W2 = λT
x (−D)1/2(−D)1/2λx + op(1) . (17)

Recalling the distributional result for λx in Lemma 2 and noticing that −D/n converges

almost surely to D∗, and D∗ = Σ−1 (see above in the proof of Lemma 2), it is not hard to show

that n1/2λT
x (D1/2n−1/2) converges in distribution to N(0, I) . This together with (16) implies

that W2 converges in distribution to χ2
k . ♦

About feasibility: Clearly when λ = 0 all the vi’s are between 0 and 1 or equivalently,

µNPMLE is feasible. For the constraint imposed by a true H0, as show above we have the order

λx = Op(n−1/2). This imply nλT G = Op(n1/2). Notice R(t) = Op(n), so as n → ∞ we always

have 0 < di/(R + nλG) < 1, or that a true null hypothesis is feasible.

Assumptions for Theorem 2

Let X1, · · · , Xn be independent, identically distributed random variables with cumulative

distribution function Fx0(t) and cumulative hazard function Λx0(t). We observe Ti = min(Xi, Ci)

and δi = I[Xi≤Ci], where the Ci are independent, identically distributed censoring times, inde-

pendent of the Xi. The cumulative distribution function of the Ci is Fc(t). The distribution

functions Fx0(t) and Fc(t) do not have common discontinuities. Further, let Y1, · · · , Ym be inde-

pendent, identically distributed random variables with cumulative distribution function Fy0(t)

and cumulative hazard function Λy0(t). We observe Uj = min(Yj , Sj) and τj = I[Yj≤Sj ], where

the Sj are independent, identically distributed censoring times, independent of the Yj . The

cumulative distribution function of the Sj is Fs(t). The distribution functions Fy0(t) and Fs(t)

do not have common discontinuities. The (Yj , Sj) are independent of the (Xi, Ci).

Let g1r(t) and g2r(t), r = 1, . . . , k, be non-negative left continuous functions with

0 <

∫
|g1r(t)|w(1−∆Λx0(t))
(1− Fx0(t))(1− Fc(t))

dΛx0(t) < ∞, w = 1, 2; r = 1, . . . , k, and

0 <

∫ |g2r(t)|w(1−∆Λy0(t))
(1− Fy0(t))(1− Fs(t))

dΛy0(t) < ∞, w = 1, 2; r = 1, . . . , k.

The functions glr(t), l = 1, 2, r = 1, . . . , k, may be random, but they have to be predictable

with respect to the filtration Ft = σ{TiI[Ti≤t]; δiI[Ti≤t]; UjI[Uj≤t]; τjI[Uj≤t]; i = 1, . . . , n; j =

1, . . . ,m}. Furthermore, if the functions glr(t) are random, we require that there are non-random
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left continuous functions glr0(t) such that sup
t≤Vn

|glr(t)− glr0(t)| = op(1) and sup
t≤Vn

| glr(t)
glr0(t) | = Op(1)

for r = 1, . . . , k as min(m,n) →∞. Here Vn = min(maxTi,max Uj).

Mathematical Derivations and Proofs for Theorem 2

The proof of Theorem 2 is very similar to the one for the one-sample situation. In the

two-sample case, the constraints are defined by

µr =
N−1∑
i=1

g1r(ti) log(1− vi)−
M−1∑
j=1

g2r(sj) log(1− wj), r = 1, . . . , k.

Define G1(ti) = {g11(ti), · · · , g1k(ti)}T and G2(sj) = {g21(sj), · · · , g2k(sj)}T . The vector λxy

is the solution to maximizing log EL(Λx,Λy) = L1 + L2 under the above constraints. Similar

to Lemma 1, application of the Lagrange multiplier method yields the maximum likelihood

estimators

vi(λ) =
d1i

R1i + min(n, m)λT
xyG1(ti)

and wj(λxy) =
d2j

R2j −min(n, m)λT
xyG2(sj)

.

In the two-sample situation, the function f(λ) defined in (12) becomes

f(λ) =
∑

[d1i log vi(λ) + (R1i − d1i) log{1− vi(λ)}]+
∑

[d2j log wj(λ) + (R2j − d2j) log{1− wj(λ)}] .

The same calculation as above (see p. 8) yields f ′(0) = 0 and f ′′(0) =
∑

where the rlth element

of the k × k matrix
∑

is

Drl = −

∑
i

n2g1rg1l

R1i

d1i

R1i − d1i
+

∑
j

m2g2rg2l

R2j

d2j

R2j − d2j

 .

Since we assume that n/m → c ∈ (0,∞) as min(m,n) → ∞, we have again that −Drl/n

converges almost surely to D∗∗
rl .

In order to show the asymptotic normality of n1/2λxy, we proceed analogous to the proof of

Lemma 2. Define h(u) = {h1(u), · · · , hk(u)}T , where

hr(u) =
∑

i

g1r(ti) log{1− vi(u)} −
∑

j

g2r(sj) log{1− wj(u)} − µr , r = 1, . . . , k,
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let λxy = ρ · λ̃, where ‖λ̃‖ = 1, and notice that

0 = λ̃T h(λ) = A + B,

where A =
∑

i

λ̃T G1(ti) log{1− d1i

R1i
} −

∑
j

λ̃T G2(sj) log{1− d2j

R2j
} − λ̃T µ = Op(n−1/2)

and B =
∑

i

λ̃T G1(ti) log
[1− d1i/{R1i + min(m,n)ρλ̃T G1(ti)}

1− d1i/R1i

]
−

∑
j

λ̃T G2(sj) log
[1− d2j/{R2j + min(m,n)ρλ̃T G2(sj)}

1− d2j/R2j

]
.

A similar calculation as in the proof of Lemma 2 yields

|B| ≥ |ρ|
1 + n|ρ| · |max

(
maxi(λ̃T G(ti)/R1i),maxj(λ̃T G(sj)/R2j)

)
|

×
( ∑

i

(λ̃T G(ti))2nd1i

R2
1i

+
∑

j

(λ̃T G(sj))2nd2j

R2
2j

)
.

Again, the sum in the last expression is of order Op(1), and |ρ| is therefore of order Op(n−1/2).

Thus, the expansion 0 = h(λxy) = h(0) + h′(0)λxy + op(n−1/2) is valid, where h′(0) is a k × k

matrix. Application of the counting process martingale central limit theorem shows that n1/2λxy

converges to N(0,Σ) with Σ = lim{h′(0)}−1.

The final step in the proof of Theorem 2 is a Taylor expansion of W ∗
2 = −2

(
f(λxy)− f(0)

)
as

W ∗
2 = −2

(
f ′(0)λxy +

1
2
λT

xyDλxy

)
+ op(1) = λT

xy(−D)1/2(−D)1/2λxy + op(1) ,

and noticing that λT
xy(−D)1/2 converges in distribution to N(0, I).

Appendix 2

R Code for Example 2

## R code for the two sample combined test of log-rank and Gehan-Wilcoxon test

## with Kidney Dialysis Patient Data from Klein and Moeschberger (1997, p.197).

## load the library and data ##

> library(KMsurv)

> data(kidney)

> library(emplik)

12



> names(kidney)

[1] "time" "delta" "type"

> sum(kidney[,3]==1)

[1] 43

> sum(kidney[,3]==2)

[1] 76

### define weight functions fR1(t) and fR2(t) ###

### these functions count the risk set size at time t, so delta=1 always ###

> temp1 <- Wdataclean3(z=kidney$time[kidney[,3]==1],d=rep(1,43) )

> temp2 <- DnR(x=temp1$value, d=temp1$dd, w=temp1$weight)

> fR1 <- approxfun(x=temp2$times,y=temp2$n.risk,method="constant",yright=0,rule=2,f=1)

> temp1 <- Wdataclean3(z=kidney$time[kidney[,3]==2],d=rep(1,76) )

> temp2 <- DnR(x=temp1$value, d=temp1$dd, w=temp1$weight)

> fR2 <- approxfun(x=temp2$times,y=temp2$n.risk,method="constant",yright=0,rule=2,f=1)

### weight function for two sample Gehan-Wilcoxon test: g_{12}=g_{22} in (11) ###

> funWX <- function(t){ fR1(t)*fR2(t)/((76*43)*sqrt(119/(76*43)) )}

### Here comes the test: ###

> emplikHs.test2(x1=kidney[kidney[,3]==1,1],d1=kidney[kidney[,3]==1,2],

x2=kidney[kidney[,3]==2,1],d2=kidney[kidney[,3]==2,2],

theta=0, fun1= funWX, fun2=funWX)

$‘-2LLR’

[1] 0.002473070

$lambda

[1] -0.1713749

### p-value ###

> 1-pchisq(0.002473070,df=1)

[1] 0.9603376

### the weight function for log-rank test: g_{11}=g_{21} in (11) ###

> funlogrank <- function(t){sqrt(119/(76*43))*fR1(t)*fR2(t)/(fR1(t)+fR2(t))}

### Now the log-rank test ###

> emplikHs.test2(x1=kidney[kidney[,3]==1,1],d1=kidney[kidney[,3]==1,2],
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x2=kidney[kidney[,3]==2,1],d2=kidney[kidney[,3]==2,2],

theta=0, fun1=funlogrank, fun2=funlogrank)

$‘-2LLR’

[1] 2.655808

$lambda

[1] 3.568833

### p-value ###

> 1-pchisq(2.655808, df=1)

[1] 0.1031723

### the weight function for both type tests ###

> funBOTH <- function(t) { cbind( funlogrank(t), funWX(t) ) }

### The test that combines both tests

> emplikHs.test2(x1=kidney[kidney$type==1,1],d1=kidney[kidney$type==1,2],

x2=kidney[kidney$type==2,1],d2=kidney[kidney$type==2,2],

theta=c(0,0), fun1=funBOTH, fun2=funBOTH)

$‘-2LLR’

[1] 13.25476

$lambda

[1] 14.80228 -21.86733

### p-value ###

> 1-pchisq(13.25476, df=2)

[1] 0.001323626
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A Tables and Figures

n α

0.01 0.05 0.1 0.15 0.2

30 0.0144 0.0550 0.1032 0.1511 0.1981

50 0.0103 0.0524 0.1057 0.156 0.2052

100 0.0102 0.0476 0.1 0.1508 0.1999

Table 1: Estimated type I errors at various significance levels α (two samples).
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