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Suppose that X1, X2, . . . , Xn are i.i.d. nonnegative random variables denoting the lifetimes

with a continuous distribution function F0 and cumulative hazard function Λ0(t). Independent

of the lifetimes there are censoring times C1, C2, . . . , Cn which are i.i.d. with a distribution G0.

Only the censored observations, (Ti, δi), are available to us:

Ti = min(Xi, Ci) and δi = I[Xi ≤ Ci] for i = 1, 2, . . . n.

For the empirical likelihood in terms of hazard, we use the Poisson extension of the likelihood

(Murphy 1995), and it is defined as

EL(Λ) =
n∏
i=1

[∆Λ(Ti))]
δi exp{−Λ(Ti)}

=

n∏
i=1

[∆Λ(Ti))]
δi exp{−

∑
j:Tj≤Ti

∆Λ(Tj)}

where ∆Λ(t) = Λ(t+)− Λ(t−) is the jump of Λ at t. (the second line assumes a discrete Λ(·)).
Let wi = ∆Λ(Ti) for i = 1, 2, . . . , n, where we notice wn = δn because the last jump of a

discrete cumulative hazard function must be one. The likelihood at this Λ can be written in

term of the jumps

EL =
n∏
i=1

[wi]
δi exp{−

n∑
j=1

wjI[Tj ≤ Ti]} ,

and the log likelihood is

logEL =
n∑
i=1

δi logwi −
n∑
j=1

wjI[Tj ≤ Ti]

 .

If we max the log EL above (without constraint) we see that wi = δi
Ri

, where Ri =
∑

j I[Tj ≥
Ti]. This is the well known Nelson-Aalen estimator: ∆Λ̂NA(Ti) = δi

Ri
. If we define R(t) =∑

k I[Tk ≥ t] then Ri = R(Ti).
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The first step in our analysis is to find a (discrete) cumulative hazard function that maximizes

the log EL(Λ) under the constraints (1):∫ ∞
0

g1(t)dΛ(t) = θ1∫ ∞
0

g2(t)dΛ(t) = θ2 (1)

· · · · · ·∫ ∞
0

gp(t)dΛ(t) = θp

where gi(t)(i = 1, 2, ..., p) are given functions satisfy some moment conditions, and θi (i =

1, 2, ..., p) are given constants. The constraints (1) can be written as (for discrete hazard)

n∑
i=1

g1(Ti)wi = θ1

n∑
i=1

g2(Ti)wi = θ2 (2)

· · · · · ·
n∑
i=1

gp(Ti)wi = θp .

A similar argument as in Owen (1988) will show that we may restrict our attention in the EL

analysis to those discrete hazard functions that are dominated by Nelson-Aalen: Λ(t)� Λ̂NA(t).

[Owen 1988 restricted his attention to those distribution functions that F (t) � the empirical

distribution.]

Since for discrete hazard functions, the last jump must be one, this imply that wn = δn =

∆Λ̂NA(Tn) always. The next theorem gives the other jumps.

Theorem 1 If the constraints above are feasible (which means the maximum problem has a

hazard solution), then the maximum of log EL(Λ) under the constraint is obtained when

wi =
δi

Ri + nλTG(Ti)δi

=
δi
Ri
× 1

1 + λT (δiG(Ti)/(Ri/n))

= ∆Λ̂NA(Ti)
1

1 + λTZi

where

G(Ti) = {g1(Ti), ..., gp(Ti)}T , Zi =
δiG(Ti)

Ri/n
= {Z1i, ..., Zpi}T for i = 1, 2, . . . , n.

and λ = {λ1, ..., λp}T is the solution of the following equations

n−1∑
i=1

1

n

Zki
1 + λTZi

+ gk(Tn)δn = θk for k = 1, . . . , p . (3)
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Proof: Use Lagrange Multiplier to find the constrained maximum of log EL. See Pan and Zhou

(2002) for details.

Similar to the proof in the paper, it can also be shown the following Wilks theorem hold.

Theorem 2 Let (T1, δ1), . . . , (Tn, δn) be n pairs of i.i.d. random variables as defined above.

Suppose gi i = 1, . . . , p are left continuous functions satisfy

0 <

∫ |gi(x)||gj(x)|
(1− F0(x))(1−G0(x−))

dΛ(x) <∞, all 1 ≤ i, j ≤ p. (4)

Furthermore, assume the matrix Σ, defined in the Lemma 2 below, is invertible.

Then, θ0 = {
∫
g1(t)dΛ(t), ...,

∫
gp(t)dΛ(t)}T will be a feasible vector with probability ap-

proaching one as n →∞ and

−2 logELR(θ0)
D−→ χ2

(p) as n→∞

where logELR(θ0) = max logEL(with constraints (2))− logEL(Λ̂NA).

Proof: Here we briefly outline the proof. The complete proof is just a multivariate version of

Pan and Zhou (2002). First, we need the following two lemmas. They are the LLN and CLT

for Nelson-Aalen estimator and can be proved via counting processes technique.

Lemma 1 Under the assumption of Theorem 2, we have, for 1 ≤ k, r ≤ p

1

n

n∑
i=1

ZkiZri =

∫
gk(t)gr(t)

R(t)/n
dΛ̂NA(t)

P−→
∫

gk(x)gr(x)

(1− F0(x))(1−G0(x−))
dΛ0(x)

as n→∞ where

R(t) =
∑

I[Ti≥t].

Lemma 2 Under the assumption of Theorem 2, we have

√
n(

1

n

n∑
i=1

Zi − θ0) =
√
n(

n∑
i=1

G(Ti)∆Λ̂NA(Ti)− θ0)
D−→MVN(0,Σ),

as n→∞ where the limiting variance-covariance matrix is

Σkr =

∫
gk(x)gr(x)

(1− F0(x))(1−G0(x−))
dΛ0(x) for 1 ≤ k, r ≤ p; (5)

and

θ0 = {
∫
g1(t)dΛ0(t), · · · ,

∫
gp(t)dΛ0(t)}T .

We define the matrix A as below. Since A→ Σ as n→∞ (Lemma 1) and we assumed Σ is

invertible and thus positive definite, we conclude that for large enough n the symmetric matrix

A is invertible. Next, we show the solution of λ to the constraint equations (3) is

λ = λ∗ = A−1b+ op(n
−1/2) (6)
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where

Akr =
1

n

n∑
i=1

ZkiZri for 1 ≤ k, r ≤ p.

b = { 1

n

n∑
i=1

Z1i − θ1, · · · ,
1

n

n∑
i=1

Zpi − θp}T

This can be proved by an expansion of equation (3).

The stickier question is that why an expansion of (3) is valid and why the remainder term

is op(n
−1/2). We deal with this in appendix.

Define

f(λ) = logEL(wi(λ)) =
n∑
i=1

δi logwi(λ)−
∑
j

wj(λ)I[Tj ≤ Ti]


and the test statistic −2 logELR(θ0) can be expressed as

−2 logELR = 2[f(0)− f(λ∗)] = 2[f(0)− f(0)− λ∗T f ′(0)− 1/2λ∗T f ′′(0)λ∗ + . . .].

Straight calculation show f ′(0) = 0 and f ′′(0) = A. Therefore

−2 logELR = −λ∗T f ′′(0)λ∗ + . . . (7)

simplify it to the following

−2 logELR(θ0) = nbTA−1b+ op(1)

Finally, by Lemma 1 and Lemma 2, we get

−2 logELR(θ0)
D−→ χ2

(p) as n→∞ .
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Appendix. We now give a proof of the Lemma 1, ‘law of large number’ for the Zi or for

the integral of Nelson-Aalen estimator. The results is obviously true if we impose more moment

conditions. We, however, try to give a proof that only assume the finiteness of the limiting

integration and without the extra moment condition. Also, we allow the g(t) function to be a

random sequence of functions. Notice here the random variables Zi are not independent.

Lemma 1 Under assumptions below, for given k = 1, 2, · · · , p we have

1

n

n∑
i=1

Z2
ki =

∫
g2k(t)

R(t)/n
dΛ̂NA(t)

P−→
∫

g2k(x)

(1− F0(x))(1−G0(x−))
dΛ0(x)

Assumptions: (We omit the subscript k. These conditions should hold for all k = 1, 2, · · · , p.
)

(1) The limit that you hope to converge to must be finite: i.e.
∫∞
0

g2(x)
(1−F0(x))(1−G0(x−))dΛ0(x) <

∞
(2) If we use gn(t) on the left side, then we need to assume: it converges uniformly in any

finite intervals, i.e. for any finite τ , supt<τ |gn(t)− g(t)| go to zero in probability and the ratio

supi |gn(Ti)/g(Ti)| is bounded in probability. These two conditions are satisfied by the empirical

distributions, the Kaplan-Meier estimator and the Nelson-Aalen estimator.

Notice in the CLT of the martingale (Lemma 2), we will further require that gn(t) be pre-

dictable functions.

Proof:

We first proof the LLN for
∫ τ
0 for any given finite τ .∫ τ

0

g2n(t)

R(t)/n
dΛ̂(t) =

∑
i

I[Ti < τ ]
g2n(Ti)

R(Ti)/n

∆N(Ti)

R(Ti)
(8)

Minus and plus the term (recall ∆N(Ti) = δi)

1

n

∑
i

I[Ti < τ ]
g2(Ti)

[1−H(Ti−)]2
δi

in the above, and regroup, we get

=
1

n

∑
i

I[Ti < τ ]δi

(
g2n(Ti)

[R(Ti)/n]2
− g2(Ti)

[1−H(Ti−)]2

)
+

1

n

∑
i

I[Ti < τ ]
g2(Ti)δi

[1−H(Ti−)]2
(9)

The first term above is bounded by

1

n

∑
i

I[Ti < τ ]

∣∣∣∣ g2n(Ti)

[R(Ti)/n]2
− g2(Ti)

[1−H(Ti−)]2

∣∣∣∣ δi ≤ sup
t<τ

∣∣∣∣ g2n(t)

[R(t)/n]2
− g2(t)

[1−H(t−)]2

∣∣∣∣
The term inside the absolute sign is uniformly convergent to zero, by the assumption 2 on gn(t).

And it is well known that R(t)/n → [1−H(t−)] uniformly. Therefore the reciprocal of it is at

least uniformly convergent on t ≤ τ .
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The last term in (9) above is an iid sum with respect to (Ti, δi). By classic LLN, it converge

to its expectation, which is

E

(
I[Ti < τ ]

g2(Ti)δi
[1−H(Ti−)]2

)
=

∫ τ

0

g2(t)

1−H(t−)
dΛ0(t)

which by assumption 1 is finite. This proves that the Lemma holds for any finite τ .

We need to take care of the tail:
∫∞
τ . By assumption 1,∫ ∞
τ

g2(t)

1−H(t−)
dΛ0(t)

can be made arbitrary small by selecting a large τ . (say smaller than ε/C)

Since the ratio gn(Ti)/g(Ti) and [1 − H(Ti−)]/[R(Ti)/n] are both uniformly (in sup1≤i≤n)

bounded in probability (assumption 2, and property of empirical distribution function) we have,

that the term is bounded in probability by∑
i

I[Ti ≥ τ ]
g2n(Ti)

R(Ti)/n

∆N(Ti)

R(Ti)
≤ C 1

n

∑
i

I[Ti ≥ τ ]
g2(Ti)δi

[1−H(Ti−)]2

This summation/average above converges to its mean (since it is an iid average)

C

∫ ∞
τ

g2(t)

1−H(t−)
dΛ0(t)

the absolute value of which, in turn, is smaller than the pre-selected ε. This finishes the proof.

The proof of Lemma 2 is direct consequence of the martingale central limit theorem, See,

for example, Kalbfleisch and Prentice 2002 chapter 5, Theorem 5.1 in particular.
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Appendix. Verification of λ0 is small.

We give a proof that validates the expansion of (3). In other words, we show the solution of

(3) is small. We want to show λTZi is small uniformly over i. We shall denote the solution as

λ0.

Lemma 3: Suppose Mn = op(n
1/2), then we have

λn = Op(n
−1/2) if and only if

|λn|
1 + |λnMn|

= Op(n
−1/2) .

Proof: Homework.

Lemma 4: If X1, · · · , Xn are identically distributed, and E(X1)
2 < ∞, then we have

Mn = max1≤i≤n |Xi| = op(n
1/2).

Proof Since {Mn > a} = ∪{|Xi| > a}, we compute

P (Mn > n1/2) = P (
n⋃
i=1

(|Xi| > n1/2)) ≤
n∑
i=1

P (|Xi| > n1/2) .

By the identical distribution assumption,

= nP (|X1| > n1/2) = nP (X2
1 > n) .

Since EX2
1 < ∞, the right hand side above → 0 as n → ∞. Similar proof will show that, if

E|Xi|p <∞ then Mn = op(n
1/p).

Lemma 5: We compute

E
δig

2(Ti)

[1− F (Ti)]2[1−G(Ti−)]2
=

∫
g2(t)

[1− F (t)][1−G(t−)]
dΛ(t) .

Therefore if we assume
∫ g2(t)

[1−F (t)][1−G(t−)]dΛ0(t) <∞ then

M∗n = max
1≤i≤n

δi|g(Ti)|
[1− F (Ti)][1−G(Ti−)]

= op(n
1/2)

by Lemma 4 and 5.

Now, using a theorem of Zhou (1992) we can replace the denominator of M∗n by R(Ti)/n:

Mn = max
1≤i≤n

|Zi| = max
δi|g(Ti)|
Ri/n

≤M∗n max
i

[1− F (Ti)][1−G(Ti−)]

Ri/n
= op(n

1/2) .

Now we proceed: denote the solution by λ0. We notice that for all i, 1 + λT0 Zi ≥ 0 since

the solution wi given in Theorem 1 must give rise to a legitimate jump of the hazard function,

which must be ≥ 0. Clearly wi ≥ 0 imply 1 + λT0 Zi ≥ 0.

First we rewrite the equation (3) and notice that λ0 is the solution of the following equation

0 = l(η).

0 = l(λ0) = (θ0 −
1

n

∑
Zi) +

λ0
n

n−1∑
i=1

Z2
i

1 + λ0Zi
(10)
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Therefore,

θ0 −
1

n

∑
Zi = − λ0

n

n−1∑
i=1

Z2
i

1 + λ0Zi
(11)

∣∣∣∣θ0 − 1

n

∑
Zi

∣∣∣∣ =
|λ0|
n

∣∣∣∣∣
n−1∑
i=1

Z2
i

1 + λ0Zi

∣∣∣∣∣ (12)

Since for every term (at least when δi = 1, or Z2
i > 0), Z2

i /(1 +λ0Zi) ≥ 0, therefore we have∣∣∣∣θ0 − 1

n

∑
Zi

∣∣∣∣ =
|λ0|
n

∑ Z2
i

|1 + λ0Zi|

Replace the denominators 1 + λ0Zi by its upper bound: for any i we have

|1 + λ0Zi| ≤ 1 + |λ0|Mn

we got a lower bound in the fraction∣∣∣∣θ0 − 1

n

∑
Zi

∣∣∣∣ ≥ |λ0|
1 + |λ0|Mn

1

n

n−1∑
i=1

Z2
i ≥ 0

Since θ0 − 1/n
∑
Zi = Op(n

−1/2) (CLT, Lemma 2), We see that

|λ0|
1 + |λ0|Mn

1

n

∑
Z2
i = Op(n

−1/2)

and obviously 1
n

∑
Z2
i = Op(1) (Lemma 1) thus we must have

|λ0|
1 + |λ0|Mn

= Op(n
−1/2) .

By Lemma 3 above we must finally have λ0 = Op(n
−1/2).

As a consequence, we also have λ0Mn = op(1) and thus λ0Zi = op(1) uniformly for all i.
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