STA709 Lecture 1 Spring Semester

1 Glivenko-Cantelli type theorems

Given ii.d. observations Xji, ..., X,, with unknown distribution function F'(t), consider the
empirical (sample) CDF

. 1 &
Fult) = > i<
=1

Then as n — oo, X
sup  |Fu(t) — F(t)] = 0

—oo< t <oo

Without the sup (i.e. for a fixed t) this is just an ordinary LLN for Bernoulli r.v.s The
difficult (and usefulness) is in the sup. Notice that F(t) = P(X <t) = P(X € (—o0,t]), where
(—o0,t] can be considered as a set A (indexed by t). And the Glivenko-Cantelli theorem can
be rewritten as:

sup| [ d[F(s) = F(s)| %0

Does the following convergence hold if A is any Lebesgue measurable set in §7

sup | [ d[F,(s) — F(s)]| <30
A€ A

We know the following:
(1) it § = {(—o0,t],Vt € R}, then the uniform convergence holds;
(1.5) if § = {(a, b], for any real a < b}, then the uniform convergence holds;
(2) if § = { all measurable sets }, then the uniform convergence doesn’t holds;
(3) if § = Vapnik-Chervonenkis (V-C) sets, then the uniform convergence holds.
We shall see that the key is § N {z1, 79, -+ ,2,} should have n* (polynomials many) different
sets, not exponentially many (2").

1.1 The proof of Glivenko-Cantelli theorem

Suppose X1, ..., X, s F(t), and Y3, ..., Y, RS- F(t) (same CDF). Also assume X’s are inde-

pendent of Y’s. Let

. 1 —

F(t) = n z; Iix,<q)
and

1 n
Fi(t) =~ > i<y
=1

Step 1: Symmetrization (See Page 14 of Pollard for details)

Ve > 0; P( sup |E,(t)— F(t)] > €)
<2P(_swp |(Fult) = () = (Fi(0) = F(0)] > )
=2P(_swp_|Fu(t) = E3(1)] > )

1



STA709 Lecture 1 Spring Semester

Since F,(t) and F*(t) are piecewise constant functions, thus |F),(t) — F*(¢)| has at most
(2n + 1) different values when —oo < t < 0.
Step 2: Turn infinite many “Sup” to finite many “Max”, corresponding to (2n+1) different
values. ) . A ¢
2P( sup |F,(t) — Er(t)] > =) =2P( max |F,(t)— F:(t)] > =)

—co<t<oo 2 t=t1,....tan+1 2

2n+1

=2P( U |Fn(tz) — F(t:)] > 5)

2n+1
<23 P(E(t) — F(t:)] > %) (By Boole’s ineq.)
=1

Step 3: Hoeffding’s Inequality (Pollard, 1984)
Suppose Y1*,...,Y,* are independent with EY;* = 0 (Mean 0) and a; < Y7* < b; (bounded)
then,

_o2p2

I
Vn >0, P(Yi* + Yo" + ...+ Y, >n) < 2eTmiCimed?,

Let )
Vit = E(I[Xigt} — Iiv,<s))

then we have ) )
S
n n

and E(Y;*) = 0. Thus Hoeffding’s Inequality can be applied to |E},(t;) — F*(;)|, with n = 5
2n+1 . ¢ 2n+1 _2(5)2
2 P(|F,(t;) — x ) >=) <2 2 — 2
> PR - F0 > 5 <2 20w (i)

= (8n+4)e v
— 0 as n — 00
Remarks: (1) The above inequality holds for any € > 0 and any n. So we actually proved

P( sup |En(t) — F(t)] > €) < (8n +4)e "5 ; (1)

—oo<t<oo

n€2
(2) It is worth noting that how fast this bound (8n + 4)e™ s goes to 0. For example,

Yo (8n + 4)e™"F < oo, an application of Borel-Cantalli lemma turns this into a.s. con-
vergence. so Glivenko-Cantelli is almost surely converge. This also works if we replace (8n+4)
with any polynomials of n like n¥.
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1.2 Generalizations

Many generalizations are possible.

1. The random variables X1, X5, -+, X,, need only be independent; and do not have to be
identically distributed. The limiting distribution is then F,(t) = 1/n Y Fi(t). (The limit is
always obtained by replace the random variables by the expectations)

2. The constant 1/n may be replaced by other constants or a sequence of n constants:
ai,as, - ,a,. The result will be

n

62
P Ssu ai] Xz S t| — CLZ‘E ) > € S 8n + 4) ex |:_n—:| :
(amp 2 X<t = aifil)] > 0 < (B0 + howp |~ 7

3. The limit do not have to be distribution functions. Any bounded non random function
will do. In particular a sub-distrbution function.

sup Y _ aillix,<t, 5,21) — Ui(1)]
L
where U;(t) = Elx,<i, 5,=1)-

Excercise:
Suppose, as n — oo we have

! 1
sup —|N(t) — EN(t)] —** 0  and sup —|R(t) — ER(t)] —** 0

—oco<t<oo N —oco<t<oo N

as n — 0o. Show that

"dN(s) /t dEN(s)
H —_
o R(s) o LER(s)

again, uniformly for those ¢ that FR(t) > n > 0.
Furthermore, suppose ¢(t) is a function that the integral in the limit below is well defined.
Let g,(t) be a random sequence of functions that

sup  [gn(t) —g(t)] =% 0.

—oo<t<oo

Show that . (5)AN (s) . ()IEN(s)
gn(S S qg(s s
/o R(s) / ER(s)

again, uniformly for those ¢t that ER(t) > n > 0.
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Let
§={A; = (—00,t], —00 < t < 00}

Arn{zy, ozt = {0}, {o }, {maa}, o {120}

(WLOG assume the z;’s are ordered.) The number of all subsets of {1, ..., x,} is 2", but the
number of all sets of the form A; N {zy,...,2,} is (n + 1). In general, if the number of all
sets of the type AN {xy,...,x,} is a polynomial function in n (i.e. O(n*) < 2"), then the sets
contained in A is a V-C class of sets.

For example, if A = Ay, = (a,b], —00 < a < b < oo, then the number of all sets of type
An{xy,...,x,} is @ + 1 (including empty set). Therefore the sets of Ay, = (a,b] is a V-C
class of sets.

Claim: If and only if § is a V-C class of sets, then

P(Sup| I[A}dﬁ’n(t) — /[[A]dF(t)| > 6) —0
AeF

1.3 Applications
In the Cox model, the Breslow estimate of Baseline hazard and Fisher information matrix.

. t LAN(s
0 3 Dict lyi>s€P%

We focus on the denominator.

1 & 1 &
Bz g Bzi
P (sgp ’ﬁ ;1 Iy,>qe - ;1 P(Y; > s)e

)

< (8n+4)e .  (Condition : |z] < M < o)

Where
P(Y; > s) = P(T} > $)P(C; > s) = MOI[1 = G(s)] = MO [1 = G(s)

Similar for Fisher information matrix

n

1 |
=D wt Iz
n

i=1
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The Glivenko-Cantelli can also be formulated for functions.

P( sup| fmmﬁm»—/meFuﬂ>a

fET

1 n
= Peup|y Y fw) - [ @)@ >
What is the condition on § to make above — 07

V-C class of function: if a function’s graph is a V-C class of sets.

f(x) <= graph{(z,y)|f(x) > y}

More dimensions (example: 2 dimensions)

The number of all sets of AN {xy,...,2,} is a polynomial function in n = A = rectangles €
“V-C class of sets”

Hence the Glivenko-Cantelli convergence works in 2 dimensions etc.

Homework:
Is the following true? Prove if it is true.

1 1 a.sS.
su - — =0

If not, what bound instead of x(,) will make the convergence hold?

Homework: Suppose An(t) is the Nelson-Aalen estimator based on n right censored obser-
vations, and the A(t) is the true cumulative hazard. Assume A(t) is continuous, also assume
A(t) T oo as t 1 oo. Show that, as n — oo

sup [An () — A()] — 0

t<M

either in probability or almost surely.
Any speed? Can we make it sup, .7

Reference: Pollard D. (1984) Convergence of Stochastic Processes. Springer
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2 Empirical Likelihood and Bootstrap

The idea of Boostrap: In the correspondence (or the link between that) of F,(-) — (6, — ),
bootstrap apply a random perturb to the F,,, and see how (én —6y) change accordingly. Repeat
this many times and you have a sampling distribution of (én — 6p). The random perturbation
is obtained by a random sampling (or re-sampling) to E,.

The idea of Empirical Likelihood: In the correspondence of E, () — 0, , EL force the
statistic 49 to the value 6y, and find the tilted F), that corresponding to this perturbed 9 We
denote the tilted distribution as F2* for some nonzero \.

It turns out R
EL(F)

EL(F,)

will have a chi square distribution, a pivatol distribution when 6 is the true value of the pa-
rameter.

—2log

Under null hypothesis, the perturbation of 6, to 6 is of order 1 /+/n (usually). In bootstrap,
the perturbation of re-sampling to F), is also of order 1 /\/n.

The differrence: the bootstrap is a random perturbation but EL is a fixed perturbation, so
bootstrap usually need simulation to repeat many times, and result may be slightly difference
due to random re-sample errors. On the other hand, bootstrap can be applied to any statistic,
but EL works most successfully for the case § is NPMLE. (has anyone try it on non-MLE?)
In some setup, it may not be clear how a random perturbation should be applied to the F
becausse there are several plausible ways to do it. On the other hand, for EL there is usually
clear, and only one way to set 0 to 6.

Bootstrap needs to estimate a whole distribution (or percentile), and the EL can rely on
the fact that the distribution of the likelihood ratio is a pivatol chi square.

The introduction of the A turns the non-parametric problem into a parametric problem. In
the new parametric problem, we are estimate the “true” value of zero, and the information of
A is just the negative second derivative of the log likelihood and the MLE is An which has an
asymptotic normal distribution. This sub-family of parametric distributions are the so-called
least favorable sub-distributions, an idea first proposed by Stone in 1956.
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For any (square) integrable function ¢(¢) and a distribution F'(-), define

910 = 60(0) = 7y [ owir)

where 7p = sup{z : F'(x) < 1}.

Theorem Denote the Kaplan-Meier estimator based on n i.i.d. observations as E,. We

have
1 - 1
TR Jo g “O = TR ],

that is

5, (1) — or(t)

The convergence is uniformly, almost sure, i.e.
sgp |$Fn(t) —¢r(t)] — 0, a.s.

Theorem Assume ¢(t) is square integrable with respect to F'(t). Then we have

J160) - 6 0Pabs0) — [lott) - ar(oaF ()
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Akritas (2000) studied the central limit theorem for the Kaplan-Meier integrals. There are
earlier papers about the same topic, but the asymptotic variance expression of Akritas (2000)
is new and interesting.

Theorem (Akritas 2000) The asymtotic variance of Kaplan-Meier integrals are

asgvar (Vi [ otafionto) = [ o) - st A0

A multivariate version of this theorem can be easily obtained. Denote ®(t) = (¢1(¢), - , ¢r(t)),
then the asymptotic variance-covariance matrix of the k-vector of Kaplan-Meier integrals is

AsyVarCov (ﬂ / cb(t)dﬁKM(t)) = [o;]

v - F)lF()
T - - — t t
= (1) = di(0)][0; (1) — (¢
my= [ i) = G0l = 6,01 T
This multivariate version can be obtained by using the representation of Akritas (2000), his
Theorem 6.
An easier to check sufficient condition to insure the variance are well defined is

T PP(s)
/OO T(s—)dF(s) < 00 .

When there is no censoring, the Kaplan-Meier estimator become the empirical distribution
and the integral with respect to empirical distribution is just the i.i.d. summation (or average).
Finally, when there is no censoring 1 — H(s—) = 1 — F'(s—), the covariance formula of Akritas
above simplify to the following

1 < 1<
AsyCov <% ; ?i(Xu), Tn uz:l o; (Xu)>

can be written as
| - 6010 - 01 [f%dj(”

.
—0o0
On the other hand, the said covariance can obviously be written as

| ety - Bolies(t) - Eoar ()
We, therefore, arrive at the following identity
Lemma For function ¢; and ¢, that are square integrable with respect to F'(t) we have

T - 7 L= F)dF(t) "

[ 160 =000 = b0l s 2 = [ 160 = Bodloste) — o)
When either the expectations E¢; = 0 or E¢; = 0 or both, the above identity can further

be simplified to

[ 6= a0l - 01 TS = [ elolare .

T T
—00 —00

We comment that this identity holds for any distribution F(-), we later will use this when F(t)

is the Kaplan-Meier distribution.
8
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A general empirical likelihood theorem. For a sample of n independent observations with
distribution belongs to a family F,(f) here (3 is the finite dimentional parameter, F, can be
nonparametric. If there exist a distribution Fp, such that F,, << Fy,, that is all distributions
are dominated by a single (but can depend on n) distribution Fp,, then empirical likelihood
works for test the finite parameter 5 of the distributions F,.



