
STA709 Lecture 1 Spring Semester

1 Glivenko-Cantelli type theorems

Given i.i.d. observations X1, ..., Xn with unknown distribution function F (t), consider the
empirical (sample) CDF

F̂n(t) =
1

n

n∑
i=1

I[Xi≤t].

Then as n→∞,
sup

−∞< t <∞
|F̂n(t)− F (t)| a.s.−→ 0

Without the sup (i.e. for a fixed t) this is just an ordinary LLN for Bernoulli r.v.s The
difficult (and usefulness) is in the sup. Notice that F (t) = P (X ≤ t) = P (X ∈ (−∞, t]), where
(−∞, t] can be considered as a set A (indexed by t). And the Glivenko-Cantelli theorem can
be rewritten as:

sup
A
|
∫
A

d[F̂n(s)− F (s)]| a.s.−→ 0

Does the following convergence hold if A is any Lebesgue measurable set in F?

sup
A∈F
|
∫
A

d[F̂n(s)− F (s)]| a.s.−→ 0

We know the following:
(1) if F = {(−∞, t],∀t ∈ R}, then the uniform convergence holds;
(1.5) if F = {(a, b], for any real a < b}, then the uniform convergence holds;
(2) if F = { all measurable sets }, then the uniform convergence doesn’t holds;
(3) if F = Vapnik-Chervonenkis (V-C) sets, then the uniform convergence holds.
We shall see that the key is F ∩ {x1, x2, · · · , xn} should have nk (polynomials many) different
sets, not exponentially many (2n).

1.1 The proof of Glivenko-Cantelli theorem

Suppose X1, ..., Xn
i.i.d.∼ F (t), and Y1, ..., Yn

i.i.d.∼ F (t) (same CDF). Also assume X’s are inde-
pendent of Y ’s. Let

F̂n(t) =
1

n

n∑
i=1

I[Xi≤t]

and

F ?
n(t) =

1

n

n∑
i=1

I[Yi≤t]

Step 1: Symmetrization (See Page 14 of Pollard for details)

∀ε > 0; P ( sup
−∞<t<∞

|F̂n(t)− F (t)| > ε)

≤ 2P ( sup
−∞<t<∞

|(F̂n(t)− F (t))− (F ?
n(t)− F (t))| > ε

2
)

= 2P ( sup
−∞<t<∞

|F̂n(t)− F ?
n(t)| > ε

2
)
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Since F̂n(t) and F ?
n(t) are piecewise constant functions, thus |F̂n(t) − F ?

n(t)| has at most
(2n+ 1) different values when −∞ < t <∞.
Step 2: Turn infinite many “Sup” to finite many “Max”, corresponding to (2n+1) different
values.

2P ( sup
−∞<t<∞

|F̂n(t)− F ?
n(t)| > ε

2
) = 2P ( max

t=t1,...,t2n+1

|F̂n(t)− F ?
n(t)| > ε

2
)

= 2P (
2n+1⋃
i=1

|F̂n(ti)− F ?
n(ti)| >

ε

2
)

≤ 2
2n+1∑
i=1

P (|F̂n(ti)− F ?
n(ti)| >

ε

2
) (By Boole’s ineq.)

Step 3: Hoeffding’s Inequality (Pollard, 1984)
Suppose Y1

?, ..., Yn
? are independent with EYi

? = 0 (Mean 0) and ai ≤ Y1
? ≤ bi (bounded)

then,

∀η > 0, P (|Y1
? + Y2

? + ...+ Yn
?| > η) ≤ 2e

−2η2∑n
i=1

(bi−ai)2 .

Let

Yi
? =

1

n
(I[Xi≤t] − I[Yi≤t])

then we have

− 1

n
≤ Yi

? ≤ 1

n

and E(Yi
?) = 0. Thus Hoeffding’s Inequality can be applied to |F̂n(ti)− F ?

n(ti)|, with η = ε
2

2
2n+1∑
i=1

P (|F̂n(ti)− F ?
n(ti)| >

ε

2
) ≤ 2

2n+1∑
i=1

2 exp

(−2( ε
2
)2

( 2
n
)2n

)
= (8n+ 4)e−

nε2

8

→ 0 as n→∞

Remarks: (1) The above inequality holds for any ε > 0 and any n. So we actually proved

P ( sup
−∞<t<∞

|F̂n(t)− F (t)| > ε) ≤ (8n+ 4)e−
nε2

8 ; (1)

(2) It is worth noting that how fast this bound (8n + 4)e−
nε2

8 goes to 0. For example,∑∞
n=1(8n + 4)e−

nε2

8 < ∞, an application of Borel-Cantalli lemma turns this into a.s. con-
vergence. so Glivenko-Cantelli is almost surely converge. This also works if we replace (8n+ 4)
with any polynomials of n like nk.
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1.2 Generalizations

Many generalizations are possible.
1. The random variables X1, X2, · · · , Xn need only be independent; and do not have to be

identically distributed. The limiting distribution is then F̄n(t) = 1/n
∑
Fi(t). (The limit is

always obtained by replace the random variables by the expectations)
2. The constant 1/n may be replaced by other constants or a sequence of n constants:

a1, a2, · · · , an. The result will be

P ( sup
−∞<t<∞

n∑
i=1

|aiI[Xi ≤ t]− aiFi(t)| > ε) ≤ (8n+ 4) exp

[
− ε2

8
∑n

i=1 1/a2
i

]
;

3. The limit do not have to be distribution functions. Any bounded non random function
will do. In particular a sub-distrbution function.

sup
t

n∑
i=1

ai|I[Xi≤t, δi=1] − Ui(t)|

where Ui(t) = EI[Xi≤t, δi=1].

Excercise:
Suppose, as n→∞ we have

sup
−∞<t<∞

1

n
|N(t)− EN(t)| −→a.s. 0 and sup

−∞<t<∞

1

n
|R(t)− ER(t)| −→a.s. 0

as n→∞. Show that ∫ t

0

dN(s)

R(s)
−→

∫ t

0

dEN(s)

ER(s)

again, uniformly for those t that ER(t) > η > 0.
Furthermore, suppose g(t) is a function that the integral in the limit below is well defined.

Let gn(t) be a random sequence of functions that

sup
−∞<t<∞

|gn(t)− g(t)| →a.s. 0 .

Show that ∫ t

0

gn(s)dN(s)

R(s)
−→

∫ t

0

g(s)dEN(s)

ER(s)

again, uniformly for those t that ER(t) > η > 0.
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Let
F = {At = (−∞, t],−∞ < t <∞}

At ∩ {x1, ..., xn} = {φ}, {x1}, {x1x2}, ..., {x1...xn}

(WLOG assume the xi’s are ordered.) The number of all subsets of {x1, ..., xn} is 2n, but the
number of all sets of the form At ∩ {x1, ..., xn} is (n + 1). In general, if the number of all
sets of the type A ∩ {x1, ..., xn} is a polynomial function in n (i.e. O(nk)� 2n), then the sets
contained in A is a V-C class of sets.
For example, if A = Aab = (a, b],−∞ < a < b < ∞, then the number of all sets of type

A ∩ {x1, ..., xn} is n(n+1)
2

+ 1 (including empty set). Therefore the sets of Aab = (a, b] is a V-C
class of sets.
Claim: If and only if F is a V-C class of sets, then

P (sup
A∈F
|
∫
I[A]dF̂n(t)−

∫
I[A]dF (t)| > ε)→ 0

1.3 Applications

In the Cox model, the Breslow estimate of Baseline hazard and Fisher information matrix.

Λ̂0(t) =

∫ t

0

1
n
dN(s)

1
n

∑n
i=1 I[Yi≥s]e

βzi

We focus on the denominator.

P

(
sup
s
| 1
n

n∑
i=1

I[Yi≥s]e
βzi − 1

n

n∑
i=1

P (Yi ≥ s)eβzi | > ε

)

≤ (8n+ 4)e−
nε2

8M2 (Condition : |zi| ≤M <∞)

Where
P (Yi ≥ s) = P (Ti ≥ s)P (Ci ≥ s) = eΛi(s)[1−G(s)] = eΛ0(s)eβzi [1−G(s)]

Similar for Fisher information matrix

1

n

n∑
i=1

zi
2I[Yi≥s]e

βzi
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The Glivenko-Cantelli can also be formulated for functions.

P ( sup
f∈F
|
∫
f(x)dF̂n(x)−

∫
f(x)dF (x)| > ε)

= P (sup
f∈F
| 1
n

n∑
i=1

f(xi)−
∫
f(x)dF (x)| > ε)

What is the condition on F to make above → 0?
V-C class of function: if a function’s graph is a V-C class of sets.

f(x)⇐⇒ graph{(x, y)|f(x) > y}

More dimensions (example: 2 dimensions)
The number of all sets of A ∩ {x1, ..., xn} is a polynomial function in n ⇒ A = rectangles ∈
“V-C class of sets”
Hence the Glivenko-Cantelli convergence works in 2 dimensions etc.

Homework:
Is the following true? Prove if it is true.

sup
−∞<t≤x(n)

∣∣∣∣∣ 1

1− F̂n(t)
− 1

1− F (t)

∣∣∣∣∣ a.s.→ 0

If not, what bound instead of x(n) will make the convergence hold?

Homework: Suppose Λ̂n(t) is the Nelson-Aalen estimator based on n right censored obser-
vations, and the Λ(t) is the true cumulative hazard. Assume Λ(t) is continuous, also assume
Λ(t) ↑ ∞ as t ↑ ∞. Show that, as n→∞

sup
t≤M
|Λ̂n(t)− Λ(t)| −→ 0

either in probability or almost surely.
Any speed? Can we make it supt<∞?

Reference: Pollard D. (1984) Convergence of Stochastic Processes. Springer
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2 Empirical Likelihood and Bootstrap

The idea of Boostrap: In the correspondence (or the link between that) of F̂n(·) −→ (θ̂n − θ0),
bootstrap apply a random perturb to the F̂n, and see how (θ̂n−θ0) change accordingly. Repeat
this many times and you have a sampling distribution of (θ̂n − θ0). The random perturbation
is obtained by a random sampling (or re-sampling) to F̂n.

The idea of Empirical Likelihood: In the correspondence of F̂n(·) −→ θ̂n , EL force the
statistic θ̂n to the value θ0, and find the tilted F̂n that corresponding to this perturbed θ̂n. We
denote the tilted distribution as F̂ λ

n for some nonzero λ.
It turns out

−2 log
EL(F̂ λ

n )

EL(F̂n)

will have a chi square distribution, a pivatol distribution when θ0 is the true value of the pa-
rameter.

Under null hypothesis, the perturbation of θ̂n to θ0 is of order 1/
√
n (usually). In bootstrap,

the perturbation of re-sampling to F̂n is also of order 1/
√
n.

The differrence: the bootstrap is a random perturbation but EL is a fixed perturbation, so
bootstrap usually need simulation to repeat many times, and result may be slightly difference
due to random re-sample errors. On the other hand, bootstrap can be applied to any statistic,
but EL works most successfully for the case θ̂ is NPMLE. (has anyone try it on non-MLE?)
In some setup, it may not be clear how a random perturbation should be applied to the F̂
becausse there are several plausible ways to do it. On the other hand, for EL there is usually
clear, and only one way to set θ̂ to θ0.

Bootstrap needs to estimate a whole distribution (or percentile), and the EL can rely on
the fact that the distribution of the likelihood ratio is a pivatol chi square.

The introduction of the λ turns the non-parametric problem into a parametric problem. In
the new parametric problem, we are estimate the “true” value of zero, and the information of
λ is just the negative second derivative of the log likelihood and the MLE is λ̂n which has an
asymptotic normal distribution. This sub-family of parametric distributions are the so-called
least favorable sub-distributions, an idea first proposed by Stone in 1956.
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For any (square) integrable function φ(t) and a distribution F (·), define

φ̄(t) = φ̄F (t) =
1

1− F (t)

∫
(t, τF ]

φ(u)dF (u)

where τF = sup{x : F (x) < 1}.

Theorem Denote the Kaplan-Meier estimator based on n i.i.d. observations as F̂n. We
have

1

1− F̂n(t)

∫
(t, τF̂n ]

φ(u)dF̂n(u) −→ 1

1− F (t)

∫
(t, τF ]

φ(u)dF (u)

that is
φ̄F̂n(t) −→ φ̄F (t)

The convergence is uniformly, almost sure, i.e.

sup
t
|φ̄F̂n(t)− φ̄F (t)| −→ 0, a.s.

Theorem Assume φ(t) is square integrable with respect to F (t). Then we have∫
[φ(t)− φ̄F̂ (t)]2dF̂n(t) −→

∫
[φ(t)− φ̄F (t)]2dF (t)
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Akritas (2000) studied the central limit theorem for the Kaplan-Meier integrals. There are
earlier papers about the same topic, but the asymptotic variance expression of Akritas (2000)
is new and interesting.

Theorem (Akritas 2000) The asymtotic variance of Kaplan-Meier integrals are

AsyV ar

(√
n

∫
φ(t)dF̂KM(t)

)
=

∫ τ

−∞
[φ(t)− φ̄(t)]2

[1− F (t)]dF (t)

1−H(t−)
.

A multivariate version of this theorem can be easily obtained. Denote Φ(t) = (φ1(t), · · · , φk(t)),
then the asymptotic variance-covariance matrix of the k-vector of Kaplan-Meier integrals is

AsyV arCov

(√
n

∫
Φ(t)dF̂KM(t)

)
= [σij] ,

with

σij =

∫ τ

−∞
[φi(t)− φ̄i(t)][φj(t)− φ̄j(t)]

[1− F (t)]dF (t)

1−H(t−)
.

This multivariate version can be obtained by using the representation of Akritas (2000), his
Theorem 6.

An easier to check sufficient condition to insure the variance are well defined is∫ τ

−∞

φ2(s)

1−G(s−)
dF (s) <∞ .

When there is no censoring, the Kaplan-Meier estimator become the empirical distribution
and the integral with respect to empirical distribution is just the i.i.d. summation (or average).
Finally, when there is no censoring 1−H(s−) = 1− F (s−), the covariance formula of Akritas
above simplify to the following

AsyCov

(
1√
n

n∑
u=1

φi(Xu),
1√
n

n∑
u=1

φj(Xu)

)
can be written as ∫ τ

−∞
[φi(t)− φ̄i(t)][φj(t)− φ̄j(t)]

[1− F (t)]dF (t)

1− F (t−)
.

On the other hand, the said covariance can obviously be written as∫ τ

−∞
[φi(t)− Eφi][φj(t)− Eφj]dF (t) .

We, therefore, arrive at the following identity
Lemma For function φi and φj that are square integrable with respect to F (t) we have∫ τ

−∞
[φi(t)− φ̄i(t)][φj(t)− φ̄j(t)]

[1− F (t)]dF (t)

1− F (t−)
=

∫ τ

−∞
[φi(t)− Eφi][φj(t)− Eφj]dF (t) .

When either the expectations Eφi = 0 or Eφj = 0 or both, the above identity can further
be simplified to∫ τ

−∞
[φi(t)− φ̄i(t)][φj(t)− φ̄j(t)]

[1− F (t)]dF (t)

1− F (t−)
=

∫ τ

−∞
[φi(t)][φj(t)]dF (t) .

We comment that this identity holds for any distribution F (·), we later will use this when F (t)
is the Kaplan-Meier distribution.
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A general empirical likelihood theorem. For a sample of n independent observations with
distribution belongs to a family Fn(β) here β is the finite dimentional parameter, Fn can be
nonparametric. If there exist a distribution F0n such that Fn << F0n, that is all distributions
are dominated by a single (but can depend on n) distribution F0n, then empirical likelihood
works for test the finite parameter β of the distributions Fn.
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