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The Kaplan-Meier estimator computed from non identically distributed observations (for

both survival and censoring times) is not estimating the simple average of the survival

functions. The difference of the two can be substantial in the tails. The Greenwood

formula is less sensitive. We then examine applications of this related to the interim

power analysis in the double-blind two sample tests.
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1. Introduction, Notation and Preliminary

The Kaplan-Meier (1958) estimator is a popular estimator in survival analysis. It estimates

the distribution (survival) function when observations are subject to right censoring. But most

studies of the large sample property of the Kaplan-Meier estimator assume that the observations

are iid (Breslow and Crowley, 1974; Gill 1980) or at least one set of the survival times/censoring

times are iid (Zhou 1991). Yang (1997) introduces some weighted Kaplan-Meier estimators. He

had some limit result (TH2) restricted the setting to be a regression set up.

In practice, however, it often happens that neither the survival times nor the censoring

times are iid. This could be due to neglected covariates that are different for different patients

or gradual change of environment and lifestyle over time, etc. that are not accounted for. For

instance, Andersen et. al. (1993) calculated Kaplan-Meier estimator (p.268) and Nelson-Aalen

estimator (p.213) for 79 male patients with Malignant Melanoma assuming the survival times

are iid. Further analysis later reveal that thickness of the tumor among the 79 patients do

influence the survival times. Thus, the group of 79 patients are not really iid since they have

different tumor thickness. Similarly, other covariate effects on the competing risk can make the

censoring times non iid.

Another instance that this problem could arise is in a double blind two sample clinical trial.

In the trial often the need of early/interim evaluation arise before un-blinding is authorized. In

the absence of the identifying information for control/treatment, i.e. still blinded, if we treat

them as one combined sample then we are dealing with a situation of non-identical distribution

in both the life time and censoring, at least when the null hypothesis do not hold. See Shih

(1992) and Govindarajuru (1998).
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What is the limit, if exist, of the Kaplan-Meier estimator computed from those data? Is it

the average of the survival functions? Another way of posing the same question is: how robust

is the Kaplan-Meier estimator against the assumption of identical distribution? Our Theorem

2.1 show that the limit of the Kaplan-Meier estimator do exist but is not the average of the

survival functions. Simulation in section 4 show how different this limit could be from the the

average of the survival functions.

How is the Greenwood’s formula affected? In particular, if a two sample test is to be based

on the difference of 5 year survival probabilities of treatment and control, can we get some

estimate of the power of the eventual test without un-blinding? Shih (1992) and Govindarajulu

(1998) considered a similar testing problem for normal populations and without censoring.

The rest of this section is to establish notation and a lemma. Suppose we have two sets

of non-negative random variables: Y1, Y2, · · · , Yn which are censoring times, independent but

non-identically distributed with continuous distribution functions G1(t), G2(t), · · ·, Gn(t); and

X1, X2, · · · , Xn which are survival times, also independent but non-identically distributed with

continuous distribution functions F1(t), F2(t), · · · , Fn(t). We also assume the Yi’s are indepen-

dent of the Xi’s. To make the minimal digress to technical details we also assume all the

distributions are continuous.

The actual data that we can observe are

Zi = min(Yi, Xi), δi = I[Zi=Xi] i = 1, 2, · · ·n. (1.1)

A popular estimator based on (1.1) is the Kaplan-Meier (1958) estimator

1− F̂K(t) =
∏
s≤t

(
1− ∆N(s)

R+(s)

)
, for t ≤ Tn , (1.2)

here R+(t) =
∑
I[Zi≥t] ; N(t) =

∑
I[Zi≤t, δi=1] ; ∆N(s) = N(s) − N(s−) and Tn =

maxi≤n{Zi} . Another popular estimator is the Nelson-Aalen estimator of cumulative hazard

function

Λ̂(t) =
∑
s≤t

∆N(s)

R+(s)
=

∫ t

0

dN(s)

R+(s)
, for t ≤ Tn . (1.3)

The Altshuler’s estimator of survival function, which is related to the Nelson-Aalen estimator,

is given by

1− F̂A(t) = e−Λ̂(t) . (1.4)

We further denote 1−Hi(t) = P (Zi ≥ t) = [1−Gi(t)] [1− Fi(t)] and Λi(t) =
∫ t
0(1−Fi(s))−1dFi(s).
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The following lemma provides a link between Nelson-Aalen estimator and Kaplan-Meier

estimator through Altshuler’s estimator. We can therefore deduce the property for the Kaplan-

Meier estimator by those of Nelson-Aalen estimator. Notice this lemma is purely algebraic in

nature and has nothing to do with random variable or distributions. Therefore it is valid for

non iid data too.

Lemma 1.1 Let F̂K(t), F̂A(t) be the Kaplan-Meier and the Altshuler’s estimator defined in

(1.2) and (1.4) above. We have, ∀t, if 1− F̂K(t) > 0, then∣∣∣F̂K(t)− F̂A(t)
∣∣∣ < [1− F̂K(t)

] 4

R+(t)
.

Proof: See Cuzick (1985) for a similar inequality and proof. This exact inequality was first

stated without proof in Gu (1987), Lemma 2.2. The proof is purely algebraic. ♦

2. Limits of Estimators

The following theorem identifies the limit of the Kaplan-Meier and Nelson-Aalen estimator

computed from non iid observations. Notice the limit of the Kaplan-Meier estimator in Theo-

rem 2.1 not only depends on the Fi(t) but also involves the censoring distributions Gi(t). In

contrast, when at least one set of survival times/censoring times are iid, the almost sure limit

of the Kaplan-Meier estimator is free from Gi(t) (cf. Zhou 1991).

Theorem 2.1 The Kaplan-Meier estimator F̂K(t) and the Nelson-Aalen estimator Λ̂(t) converge

almost surely as n→∞. In fact we have, if τ is such that 1
nE[R+(τ)] = 1

n

∑
1−Hi(τ) ≥ δ > 0

for all large n, then

lim
n

sup
0<t<τ

∣∣∣∣F̂K(t)− exp[−
∫ t

0

∑
[1−Gi(s)]dFi(s)∑

[1−Gi(s)][1− Fi(s)]
]

∣∣∣∣ = 0 a.s. (2.1)

Furthermore, for ε ≤ 2 and n > 4/(ε2δ4),

P

(
sup
t<τ

∣∣∣∣Λ̂(t)−
∫ t

0

∑
[1−Gi(s)]dFi(s)∑

[1−Gi(s)][1− Fi(s)]

∣∣∣∣ > ε

)
< 16(n+ 2) exp[−nδ

4ε2

288
]. (2.2)

For later reference, we define two sequences of (nonrandom) functions F ∗n(t) and Λ∗n(t) to be

the limit in (2.1) and (2.2). i.e. lim |F̂K(t)− F ∗n(t)| → 0.

We prelude the proof with three lemmas. The first lemma can be proved following Pollard

(1984) pp.14-16. The remaining two are more or less consequences of the first lemma.
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Lemma 2.1 Let Zi, i = 1, . . . , n and P (Zi ≥ t) = 1 −Hi(t) be as defined in section one. We

have ∀ε > 0, for those n such that 1
n ≤

ε2

2

P

(
sup
t

∣∣∣∣∑ 1

n

[
I[Zi≥t] − 1 +Hi(t)

]∣∣∣∣ > ε

)
≤ 8(n+ 1) exp

[
−nε

2

8

]
, and (2.3)

P

(
sup
t

∣∣∣∣∑ 1

n

[
I[Zi≤t,δi=1] − EI[Zi≤t,δi=1]

]∣∣∣∣ > ε

)
≤ 8(n+ 1) exp

[
−nε

2

8

]
.

Lemma 2.2 For any ε > 0, if a real τ > 0 and an integer n is such that 1
nE[R+(τ)] ≥ δ > 0

and 1
n < min( ε

2

2 ,
ε2δ4

4 ), we have

P

(
sup
t≤τ

∣∣∣∣∫ t

0
(

1

R+(s)
− 1

E[R+(s)]
)dN(s)

∣∣∣∣ > ε

)
≤ 8(n+ 2) exp[−nmin(ε2δ4, δ2)

32
] .

Proof: Rewrite the integrals as

sup
t≤τ

∣∣∣∣∣∣
∫ t

0

E[R+(s)]
n − R+(s)

n
R+(s)
n

ER+(s)
n

d
1

n
N(s)

∣∣∣∣∣∣ .
Since N(s) is increasing and N(τ)−N(0) ≤ n the above is bounded by

sup
t≤τ

|E[R+(t)]
n − R+(t)

n |
E[R+(t)]

n
R+(t)
n

∫ τ

0
d

1

n
N(s) ≤ sup

t≤τ

|E[R+(t)]
n − R+(t)

n |
ER+(t)

n
R+(t)
n

.

Notice that {R+(t) · ER+(t)}−1 is increasing in t, therefore the above is again bounded by

sup
t≤τ

1

n
|ER+(t)−R+(t)| 1

ER+(τ)
n

1
R+(τ)
n

≤ 1

δ

1
R+(τ)
n

sup
t≤τ

1

n
|ER+(t)−R+(t)| ;

in view of the assumption of this lemma. Consequently, we have

P

(
sup
t≤τ

∣∣∣∣∫ t

0
(

1

R+(s)
− 1

ER+(s)
)dN(s)

∣∣∣∣ > ε

)
≤ P

(
1

δ

1
R+(τ)
n

sup
t≤τ

1

n
|ER+(t)−R+(t)| > ε

)
. (2.4)

By a similar argument to Lemma 2.1, we have

P

(∣∣∣∣∣R+(τ)

n
− ER+(τ)

n

∣∣∣∣∣ > δ

2

)
< 8 exp[−nδ

2

32
] .

Therefore aside from a set with probability at most 8 exp[−nδ2

32 ], the term {R
+(τ)
n }−1 is bounded

by 2
δ in view of the assumption of this lemma. We thus have

right hand side of (2.4) ≤ 8 exp[−nδ
2

32
] + P

(
1

δ

2

δ
sup
t≤τ

1

n
|ER+(t)−R+(t)| > ε

)
.
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Now we can use the Lemma 2.1 to bound the second term and finish the proof.

Lemma 2.3 For any ε > 0, if 1
nE[R+(τ)] ≥ δ > 0, we have

P

(
sup
t≤τ

∣∣∣∣∫ t

0

d[N(s)− EN(s)]

E[R+(s)]

∣∣∣∣ > ε

)
≤ 8(n+ 1) exp{−nε

2δ2

72
} .

Proof: Integration by parts, we obtain (for any t ≤ τ),∣∣∣∣∫ t

0

1

ER+(s)
d[N(s)− EN(s)]

∣∣∣∣ =

∣∣∣∣N(s)− EN(s)

ER+(s)
|t0 −

∫ t

0
[N(s)− EN(s)]d[

1

ER+(s)
]

∣∣∣∣
≤ 2 sup

0≤t≤τ

∣∣∣∣N(t)− EN(t)

ER+(t)

∣∣∣∣+ sup
0≤t≤τ

|N(t)− EN(t)|
∫ τ

0
d[

1

ER+(s)
]

≤ 2 sup
0≤t≤τ

1

n
|N(t)− EN(t)| 1

ER+(τ)
n

+ sup
0≤t≤τ

1

n
|N(t)− EN(t)| 1

ER+(τ)
n

.

By the assumption of the lemma, ER+(τ)/n ≥ δ, we thus can continue

≤ 3

δ
sup

0≤t≤τ

1

n
|N(t)− EN(t)| .

Therefore we have

P

(
sup
t≤τ

∣∣∣∣∫ t

0

d[N(s)− EN(s)]

E[R+(s)]

∣∣∣∣ > ε

)
≤ P

(
3

δ
sup
t≤τ

1

n
|N(t)− EN(t)| > ε

)
.

Now use Lemma 2.1, we obtain the desired result.

Proof of Theorem 2.1: We first establish the probability inequality concerning the Nelson-

Aalen estimator. The almost sure limit of the Kaplan-Meier estimator follows easily from this

inequality, Lemma 1.1 and Borel-Cantelli Lemma.

By standard argument we have,

P

(
sup
t≤τ

∣∣∣∣Λ̂(t)−
∫ t

0

dEN(s)

E[R+(s)]

∣∣∣∣ > ε

)

≤ P
(

sup
t≤τ

∣∣∣∣∫ t

0

[
1

R+(s)
− 1

E[R+(s)]

]
dN(s)

∣∣∣∣ > ε

2

)
+ P

(
sup
t≤τ

∣∣∣∣∫ t

0

d[N(s)− EN(s)]

E[R+(s)]

∣∣∣∣ > ε

2

)
.

Now use lemma 2.2 and 2.3 to bound the two probability terms on the right to finish proof. ♦
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Appendix

Here we specialize the above consistency results to the iid case, where both the lifetimes and

the censoring times are assumed to be iid. The results will be simpler and easier to remember.

And the general case can be described as ‘similar’ results hold for non-identically distributed

observations.

Theorem 2.1* The Kaplan-Meier estimator F̂K(t) and the Nelson-Aalen estimator Λ̂(t) con-

verge almost surely, uniformly on a finite interval, as n→∞.

In fact we have, if τ is a real number such that 1
nE[R+(τ)] = 1−H(τ) = [1−F (τ)][1−G(τ)] ≥

δ > 0, then for ε ≤ 2 and n > 4/(ε2δ4),

P

(
sup
t≤τ

∣∣∣Λ̂(t)− Λ(t)
∣∣∣ > ε

)
< 16(n+ 2) exp

[
−nδ

4ε2

288

]
. (1)

In particular, using the above inequality, we have for any 0 < η < 1/2,

sup
t≤τ

∣∣∣Λ̂(t)− Λ(t)
∣∣∣ = o(n−η) in probability (2)

and

sup
t≤τ

∣∣∣Λ̂(t)− Λ(t)
∣∣∣ = o(n−η) a.s. (3)

Similar inequality for the Kaplan-Meier estimator:

sup
0<t≤τ

∣∣∣F̂K(t)− F (t)
∣∣∣ = o(n−η) a.s. (4)

The last result can be obtained by using the inequality |1− e−Λ̂(t)− F̂k(t)| < 4[1−F̂k(t)]
R+(t) . One

note: easy to show 4/R+(τ) = o(n−2η) a.s..

Remark: Since our basic inequality hold for EVERY finite n (not asymptotic), the inequality

(1) above can also be explored to obtain results like when δ = δn → 0 but nδ4 ≈ n0.00001.

6



We shall not pursue this here. (this will give uniform consistancy on expanding intervals, i.e.

τ = τn →∞).

Remark: We can also obtain simpler results when the censoring is independent but non-

identically distributed. Again, we leave this to reader.
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Four useful facts about counting process martingales:

(1) Mi(t) = I[Ti ≤ t, δi = 1]−
∫ t

0
I[Ti ≥ s]dΛ(s) is an Ft-martingale, t ∈ [0,∞).

We recall the filtration definition:

Ft = σ{[Ti ≤ s]; s ≤ t}.

(2) 〈Mi(t)〉 =

∫ t

0
I[Ti ≥ s]dΛ(s).

(3) M(t) =

∫ t

0
g(s)dMi(s) is also an Ft-martingale, provided g(·) is a predictable function.

(4) 〈M(t)〉 =

∫ t

0
g2(s)d〈Mi(t)〉 =

∫ t

0
g2(s)I[Ti ≥ s]dΛ(s).
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3. Variance Estimates and Two Sample Tests

In this section we specialize the non-iid model (1.1) to the two sample case, i.e. Fi(t) = either

F1(t) or F2(t). We also examine the limit of Greenwood’s formula for estimating variance under

this setting.

The Greenwood formula states that the variance of the Kaplan-Meier estimator can be

estimated by

σ2
GW = (1− F̂K(t))2

∫ t

0

dN(s)

R+(s)[R+(s−)]
. (3.1)

But this is developed for a sample with iid survival times. Will this still be a good estimator

of the variance of the Kaplan-Meier estimators calculated on non-iid data?

Similar analysis to those in section two show that when sample size n is large, (3.1) ap-

proaches to
(1− F ∗n(t))2

n

∫ t

0

∑
[1−Gi(s)]dFi(s)

(
∑

[1−Gi(s)][1− Fi(s)])2

with Fi = either F1 or F2, and F ∗n(t) defined as in section two. The simulations in section four

(for two or more samples) show that (3.1) is not too far from the (sample) variance of F̂K(t).

Another, may be more relevant question is: how will (3.1) relate to the two variances of the

two Kaplan-Meier estimators had we been able to separate the data into two iid samples? This

question is seen to arise from the following situation.

In a two-arm double-blind clinical trial, the power analysis may require something like: have

at least 80% power to detect a difference of more than 10% in 5-year survival rates. Or require

to have at least 80% power when the ratio of the 5-year survival rates is 1.1 or above etc. Since

logarithm of the survival is the (cumulative) hazard, the latter is equivalent of requiring the

difference of cumulative hazards be larger than log 1.1.

To design a trial to achieve such power needs information (or assumptions) on the variance

of the Kaplan-Meier (or Nelson-Aalen) estimator which among other things depends on the

unknown censoring patterns. In the interim analysis of the double-blind trial without unblinding

(see Shih 1992), it is tempting to re-assess the variance assumption made in the design. Without

unblinding we are dealing with a non-iid sample. We therefore ask if we can estimate the

variances without unblinding.

Due to independence of the two arms, we have, at t = 5, say

V ar(F̂1(5)− F̂2(5)) = V ar(F̂1(5)) + V ar(F̂2(5)). (3.2)
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If we had the un-blinding information we would use Greenwood formula to estimate the two

variances on the right side of (3.2) separately, yielding the estimator (3.4) below.

Assume the two samples have approximate equal sample sizes (which many designed trials

do), we suggest an estimator of the above variance without un-blinding be

4× [1− F̂ (5)]2
∫ 5

0

dN(s)

R+(s)[R+(s−)]
. (3.3)

In the next section we compared this estimator with the “correct variance estimator”

[1− F̂1k(5)]2
∫ 5

0

dN1(s)

R1(s)[R1(s−)]
+ [1− F̂2k(5)]2

∫ 5

0

dN2(s)

R2(s)[R2(s−)]
. (3.4)

When the target power is specified in the ratio of survival rates or in the difference of the

cumulative hazards, the estimator of log[1− F (5)] is usually the Nelson-Aalen estimator rather

then log[1− F̂k(5)]. The variance estimator of the Nelson-Aalen estimator in the iid case is (see,

eg. Andersen et. al. 1993)

ˆV ar(Λ̂(t)) =

∫ t

0

dN(s)

[R+(s)]2
.

Without un-blinding and assume approximate equal sample sizes we suggest to use

4×
∫ t

0

dN(s)

[R+(s)]2
(3.5)

to estimate the variance

V ar(Λ̂1(t)− Λ̂2(t)) = V ar(Λ̂1(t)) + V ar(Λ̂2(t)) .

The “correct variance estimator” of the above is (when separation information are available)∫ t

0

dN1(s)

R2
1(s)

+

∫ t

0

dN2(s)

R2
2(s)

. (3.6)

The two variance estimators, (3.5) and (3.6), will be compared in the simulation section below.

4. Simulations

There are numerous possibilities of how the observations can deviate from iid setting. We

shall only look at two kinds of those non iid situations here: proportional hazards type and

location shift type.
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4.1 Example one: proportional hazards model

In our first simulation we took sample size 100 for each run and each entry in the table is

based on 10,000 runs. Let ri = 1.01, 1.03, 1.05, · · · , 2.99 be fixed and the random observations

be generated through (1.1) by

Xi ∼ exp(ri); Yi ∼ exp(ri) i = 1, 2, · · · , 100. (4.1)

The entry Ŝ1(t) below is the Kaplan-Meier estimator for this (non iid) data setup. The sampleSd

entry is the sample standard deviation of the 10,000 Ŝ1(t). Greenwood entry is the average of

10,000 Greenwood estimator (of standard deviation) based on the non iid sample.

For comparison we also computed a Kaplan-Meier estimator from iid observations. The iid

observations are generated from (4.1) except ri are now identical to 2, the average of the r′is. In

other words, we used one distribution that has the average hazard of the non iid sample. This

is reported as Ŝ3(t).

t Ŝ1(t) Ŝ3(t) Ŝ3.5(t) Sample Sd Greenwood

1.8 0.0759422 0.0597146 0.0611599 0.07084787 0.06555177*

1.1 0.1589313 0.1143878 0.1243290 0.07235635 0.06737697*

0.7 0.2874665 0.2467853 0.2627724 0.06788468 0.06708834

0.5 0.3990381 0.3681328 0.3847122 0.06419775 0.06443758

0.3 0.5657511 0.5485494 0.5634977 0.05713725 0.05799505

0.2 0.6790735 0.6708442 0.6825978 0.05048886 0.05160385

0.15 0.7462364 0.7408596 0.7506964 0.04600569 0.04675237

0.08 0.8535374 0.8519782 0.8579444 0.03639471 0.03645285

* the average is calculated after the NA’s are removed.

Table 1. iid (Ŝ3, Ŝ3.5) versus proportional hazard (Ŝ1) data, Kaplan-Meier estimator

Our comparison in table 1 is also valid for the general proportional hazards situation as the

following argument shows. If a strict increasing function g(·) were to apply to every Xi and

Yi we generated above, it will not change the censor/non-censor status of observations and it

will not change the relative order of the observations. Thus the Kaplan-Meier estimators of the

transformed data will be the same as those computed before transformation, except that the

time t may be different. Since g(exponential random variable with rate ri) is a random variable

with survival function e−riA(t) with A(t) = g−1(t), we obtain a general proportional hazards

model.
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In view of proportional hazards model, we rewrite the parameters ri as eβi as is customary

when formulating a proportional hazards model. We therefore also include as comparison a

third Kaplan-Meier estimator computed from iid observations, where the iid observations are

generated by (4.1) except the parameters ri are now all equal to eβ̄, β̄ been the average of the

βi. The results is reported as Ŝ3.5(t) in table 1.

What is reported above represents a small portion of the simulations we did. For example,

we computed Kaplan-Meier estimates when the censoring times and survival times are from a

sample of exponential distribution with rates ri generated independently and separately from a

uniform distribution. The same pattern of difference still exists although less severe.

From the simulation we can see the following pattern:

(1). When the underlying data are not iid but follow a proportional hazards model, the

Kaplan-Meier estimator computed from those non iid data is different from the Kaplan-Meier

estimator computed from iid data that follows the average hazard.

(2). The largest difference occurs at the tail when P (X > t) is around 10%. The relative

difference can be large (20% – 30%).

(3). The difference is smaller when we replace iid data that follows the average hazard by

iid data with hazard equal to the average of the βi ( where ri = eβi) i.e. Ŝ1 is closer to Ŝ3.5 than

is to Ŝ3.

(4). Greenwood’s formula gives an estimate that is not too far from the sample standard

deviation. See also the last two rows of table 3 and table 4 for a two sample simulation for this.

4.2 Example two: location shift model

Our second simulation will be the location shift non-iid case: let ri be as before and

Xi ∼ ri +N(µ = 100, sd = 10); Yi ∼ ri +N(µ = 100, sd = 10). i = 1, 2, · · · , 100. (4.2)

The entry Ŝ1(t) below is the average of 10,000 Kaplan-Meier estimates, each computed from

non iid observations generated through (1.1) by the distributions (4.2) above. The entry Ŝ3(t)

below is the average of 10,000 Kaplan-Meier estimates, each computed from iid observations

generated through (1.1) by (4.2) except with ri all equal to 2, the average of ri.
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t Ŝ1(t) Ŝ3(t) Sample Sd Greenwood

94 0.7887621 0.7890140 0.04375003 0.04311677

100 0.5797238 0.5795154 0.05828902 0.05728733

102 0.5010833 0.5002693 0.06186100 0.06083789

106 0.3466497 0.3451841 0.06688993 0.06582047

112 0.1592873 0.1584064 0.07434973 0.06713526*

117 0.0796410 0.07936349 0.07269148 0.06561400*

* average computed after removing the NA’s

Table 2. iid (Ŝ3) versus location shift (Ŝ1) data, Kaplan-Meier estimator

(5) The Kaplan-Meier estimator is less sensitive to the non-iid of shift alternative compared

to the proportional hazards alternative.

4.3 Example three: two sample problem

In this example we take equal sample size in the two samples and n = 100 or n = 50. We

generate

X11 · · ·X1n ∼ F1(·) X21, · · · , X2n ∼ F2(·) (4.3)

and censoring distributions

C11 · · ·C1n ∼ G1(·) C21, · · · , C2n ∼ G2(·) (4.4)

These were used to form the two samples of censored observations. In computing the blind

version of the variance estimator we merge the two samples of censored observations into one.

We compute and compare (3.5) with (3.6) and (3.3) with (3.4) at time t = 0.5.

If the power analysis were to be performed based on the difference of the cumulative hazard

functions at time t, or the (log of the) ratio of the survival functions at time t, we can proceed

as follows:

Estimate the variance of Λ̂1(t)−Λ̂2(t) by (3.5)= V ar, then if the difference of the cumulative

hazard at time t is η, the power of the test can be approximated by

P (|N(η, V ar)| > 1.96
√
V ar).

From the table 3 and 4 we see that

(6) the differences between the blind and un-blind variance estimators are small, often less

then 3%. Considering the random fluctuations exit even when two samples are indeed iid
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(under hull hypothesis, simu0, where both variance estimates are unbiased), these blind versions

of variance estimators are a good substitute for the “correct” variance estimator.

simu1 simu2 simu3 simu4 simu0

F1(·) exp(1) exp(1) exp(1) exp(1) exp(1)

G1(·) exp(1) exp(1) exp(1) exp(1) exp(1)

F2(·) exp(0.9) exp(1.15 exp(1.25) exp(0.8) exp(1)

G2(·) exp(0.85) exp(1.3) exp(1.5) exp(0.9) exp(1)

sample size 100/100 100/100 100/100 100/100 50/50

(3.4) .006030772 .006676352 .006948632 .005939583 .01239244

(3.3) .006057681 .006689299 .006925038 .005984055 .01252191

(3.6) .0159109 .02013357 .02238024 .01500604 .03509194

(3.5) .0157728 .01972328 .02132062 .01478237 .03476628

Sample Var .00147403 .001620016 .001686649 .001428136 .003142266

Greenwood .00151442 .001672325 .00173126 .001496014 .003130477

Table 3. Comparison of blind and un-blind variance estimators

simu5 simu6 simu7 simu8 simu9

F1(·) exp(0.6) exp(0.6) exp(1.6) exp(2) exp(2.2)

G1(·) exp(1) U[1,9] U[2,7] U[0,5] U[0,5]

F2(·) exp(0.8) exp(0.8) exp(1.3) exp(1.5) exp(1.5)

G2(·) exp(0.9) U[2,10] U[2,9] U[1,7] U[1,7]

sample size 100/100 100/100 100/100 100/100 100/100

(3.4) .0053072 .004088382 .00492142 .004915672 .004808153

(3.3) .0053737 .004133301 .00497129 .004990339 .004928135

(3.6) .01097273 .008427386 .02148737 .02963218 .03271447

(3.5) .01089167 .008348447 .02120381 .02828058 .03031182

Sample Var .00131513 .001021852 .001240745 .001211992 .001180526

Greenwood .00134342 .001033325 .001242823 .001247585 .001232034

Table 4. Comparison of blind and un-blind variance estimators
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