
Stochastic Calculus for Finance, AME, MT 1998, Notes 276 Martingales in continuous timeJust as in discrete time, the notion of a martingale will play a key rôle in ourcontinuous time models.Recall that in discrete time, a sequence X0; X1; : : : ; Xn for which E [jXr j] <1for each r is a martingale if E [XrjFr�1] = Xr�1:The sequence fFrgnr=0 is called a �ltration. In order to avoid abstract measuretheory, we omit a detailed discussion of �ltrations in continuous time. Instead wecontent ourselves with the following `working de�nition'.De�nition 6.1 The symbol FXt denotes the `information generated by the stochas-tic process X on the interval [0; t]'. If, based upon observations of the trajectoryfX(s); 0 � s � tg, it is possible to decide whether a given event A has occured ornot, then we write this as A 2 FXt :If the value of a stochastic variable can be completely determined given observa-tions of the trajectory fX(s); 0 � s � tg then we also writeZ 2 FXt :If Y is a stochastic process such that we have Y (t) 2 FXt for all t � 0, then wesay that Y is adapted to the �ltration fFXt gt�0.This de�nition is only intended to have intuitive content. Nevertheless, it is rathersimple to use.Example 6.2 1. De�ne A byA = fX(s) � 3:14; 8s � 18g:Then A 2 FX18 but A =2 FX17.2. For the event A = fX(10) > 8g, A 2 FXs if and only if s � 10.3. The stochastic variable Z(s) = Z 50 X(s)dsis in FXs if and only if s � 5.4. If Bt is Brownian motion and Mt = max0�s�tBs, then M is adapted to theBrownian �ltration.5. If Bt is Brownian motion and ~Mt = max0�s�t+1Bs, then ~M is not adaptedto the Brownian �ltration.De�nition 6.3 Consider a probability space (
;P) and a �ltration fFtgt�0 onthis space. An adapted family fMtgt�0 of random variables on this space withE [jMt j] <1 for all t � 0 is a martingale if, for any s � t,EP [Mtj Fs] = Ms:



Stochastic Calculus for Finance, AME, MT 1998, Notes 28Remarks:1. Often we shall be sloppy about specifying the �ltration. In all of our exam-ples there will be a Brownian motion around and it will be implicit that the�ltration is that generated by the Brownian motion.2. Many stochastic calculus texts specify a probability space as (
; fFtgt�0;P),thereby specifying the �ltration explicitly from the very beginning.3. The natural �ltration is the name given to the �ltration for which Ft consistsof those sets that can be decided by observing trajectories of the speci�edprocess up to time t. There are other possibilities, but we always use thenatural �ltration corresponding to Brownian motion in our examples.Lemma 6.4 If fBtgt�0 is a standard Brownian motion generating the �ltrationfFtgt�0, then1. Bt is an Ft-martingale.2. B2t � t is an Ft-martingale.3. exp��Bt � �22 t�is an Ft-martingale (called an exponential martingale).Proof: The proofs are all rather similar. For example, consider Mt = B2t � t.Evidently E [jMt j] <1. NowE �B2t �B2s ��Fs� = E � (Bt � Bs)2 + 2Bs (Bt � Bs)��Fs�= E � (Bt � Bs)2��Fs�+ 2BsE [ (Bt � Bs)j Fs]= t� s:ThusE �B2t � t��Fs� = E �B2t �B2s +B2s � (t� s)� s��Fs�= (t� s) +B2s � (t� s)� s = B2s � s:2Theorem 6.5 (Optional Sampling Theorem) If fMtgt�0 is a continuous mar-tingale with respect to the �ltration fFtgt�0 and if �1 and �2 are two stopping timessuch that �1 � �2 � K where K is a �nite real number, then M�2 is integrable(that is has �nite expectation) andE [M�2 j F�1 ] = M�1 ; P � a:s:Remarks:1. The term `a.s.' (almost surely) means with (P-) probability one.



Stochastic Calculus for Finance, AME, MT 1998, Notes 292. Notice in particular that if � is a bounded stopping time then E [M� ] = E [M0 ].3. The name Optional Sampling Theorem is used because stopping times aresometimes also called optional times.We illustrate the application of this by calculating the moment generating functionfor the hitting time Ta of level a by Brownian motion.Proposition 6.6 Let Bt be a Brownian motion and let Ta = inffs � 0 : Bs = ag(or in�nity if that set is empty). ThenE �e��Ta� = e�p2�jaj:Proof: We assume that a � 0. (The case a < 0 follows by symmetry.) We applythe Optional Sampling Theorem to the martingaleMt = exp��Bt � 12�2t� :We cannot apply it directly to Ta as it may not be bounded. Instead we take�1 = 0 and �2 = Ta ^ n. This gives us thatE [MTa^n] = 1:Now 0 �MTa^n = exp��BTa^n � 12�2(Ta ^ n)� � exp (�a) :On the other hand, if Ta <1, limn!1MTa^n = MTa, and if Ta = 1, Bt � a forall t and so limn!1MTa^n = 0. From the Dominated Convergence Theorem,E ��Ta<1 exp��12�2Ta + �a�� = limn!1 E [MTa^n] = 1:Taking �2 = 2� completes the proof. 2Warning: It was essential that there was a dominating random variable here.In this setting, the Dominated Convergence Theorem says that for a sequence ofrandom variables Zn, with limn!1Zn = Z, if there is a random variable Y withjZnj � Y for all n and E [Y ] <1, then we may deduce that E [Z] = limn!1 E [Zn ].In this example, the dominating random variable is just the constant e�a.7 Stochastic integration and Itô's formulaWe already saw (in Lemma 6.4) a number of random variables that are martingaleswith respect to the same probability measure and adapted to the same �ltration.All those martingales were expressed in terms of the underlying Brownian motion.In this section, we shall see that this situation is generic: if there is a measureQ under which the process Mt is an Ft-martingale, then any other Q -martingaleadapted to the same �ltration Ft can be expressed in terms of Mt (modulo some



Stochastic Calculus for Finance, AME, MT 1998, Notes 30technical assumptions). To understand this representation, we must �rst under-stand the notion of stochastic integral.Processes that model stock prices are usually functions of one or more Brow-nian motions. Here, for simplicity, we restrict ourselves to functions of just oneBrownian motion. The �rst thing that we should like to do is to write down adi�erential equation for the way in which the stock price evolves. The di�cultyis that Brownian motion is `too rough' for the familiar Newtonian calculus to beany help to us.Suppose that the stock price is of the form St = f(Bt). Formally, using Taylor'sTheorem (and assuming that f at least is nice),f(Bt+�t)� f(Bt) = (Bt+�t �Bt) f 0 (Bt) (4)+ 12! (Bt+�t � Bt)2 f 00 (Bt) + � � � :Now in our usual derivation of the chain rule, when Bt is replaced by a Lipschitzfunction, the second term on the right hand side is order O(�t2). However, forBrownian motion, we know that E [(Bt+�t � Bt)2] is �t. Consequently we cannotignore the term involving the second derivative. Of course, now we have a problem,because we must interpret the term involving the �rst derivative. If (Bt+�t �Bt)2is O(�t), then (Bt+�t � Bt) should be O(p�t), which could lead to unboundedchanges in y over a bounded time interval. However, things are not hopeless. Theexpected value of Bt+�t � Bt is zero, and the uctuations around zero are on theorder of p�t. By comparison with the Central Limit Theorem, we see that it ispossible that St � S0 is a bounded random variable. Assuming that we can makethis rigorous, the di�erential equation governing St = f(Bt) will take the formdSt = f 0(Bt)dBt + 12f 00(Bt)dt:It is convenient to write this in integrated form,St = S0 + Z t0 f 0(Bs)dBs + Z t0 12f 00(Bs)ds: (5)We have to make rigorous mathematical sense of the stochastic integral (that is,the �rst integral) on the right hand side of this equation. The key is the followingfact.Brownian motion has �nite quadratic variation.Before proving this we de�ne total variation and quadratic variation. For a func-tion f : [0; T ]! R, its variation is de�ned in terms of partitions.De�nition 7.1 Let � be a partition of [0; T ], N(�) the number of intervals thatmake up � and �(�) be the mesh of � (that is the length of the largest intervalin the partition). Write ti; ti+1, for the endpoints of a generic interval of thepartition. Then the variation of f islim�!08<: sup�:�(�)=� N(�)X1 jf(tj+1)� f(tj)j9=; :



Stochastic Calculus for Finance, AME, MT 1998, Notes 31If a function is `nice', for example di�erentiable, then it has bounded variation.Brownian motion has unbounded variation.De�nition 7.2 The quadratic variation of a function f is de�ned asq:v:(f) = lim�!08<: sup�:�(�)=� N(�)X1 jf(tj+1)� f(tj))j29=; :Notice that quadratic variation will be �nite for functions that are muchrougher than those for which the variation is bounded. Roughly speaking, �nitequadratic variation will follow if the uctuation of the function over an intervalof length � is order p�.We can now be more precise about the quadratic variation of Brownian motion.Theorem 7.3 Let Bt denote Brownian motion and for a partition � of [0; T ]de�ne S(�) = N(�)Xj=1 ��Btj � Btj�1 ��2 :Let �n be a sequence of partitions with �(�n)! 0. ThenE �jS(�n)� T j2�! 0 as n!1:Proof.We expand the expression inside the expectation and make use of our knowl-edge of the normal distribution. So, �rst observe thatjS(�n)� T j2 = ������N(�n)Xj=1 n��Btn;j � Btn;j�1 ��2 � (tn;j � tn;j�1)o������2 :Write �n;j for ��Btn;j �Btn;j�1 ��2 � (tn;j � tn;j�1). ThenjS (�n)� T j2 = N(�n)Xj=1 �2n;j + 2Xj<k �n;j�n;k:Note that since Brownian motion has independent increments,E [�n;j�n;k] = E [�n;j] E [�n;k] = 0 if j 6= k;andE ��2n;j� = E h��Btn;j �Btn;j�1 ��4 � 2 ��Btn;j �Btn;j�1 ��2 (tn;j � tn;j�1) + (tn;j � tn;j�1)2i :Now for a normally distributed random variable X with mean zero and variance�, it is easy to check that E [jXj4 ] = 3�2, so thatE ��2n;j� = 3 (tn;j � tn;j�1)2 � 2 (tn;j � tn;j�1)2 + (tn;j � tn;j�1)2= 2 (tn;j � tn;j�1)2� 2�(�n) (tn;j � tn;j�1) :



Stochastic Calculus for Finance, AME, MT 1998, Notes 32Summing over jE �jS(�n)� T j2� � 2 N(�n)Xj=1 �(�n) (tn;j � tn;j�1)= 2�(�n)T ! 0 as n!1: 2This result is not enough to de�ne the integral R f(Bs)dBs in the classical way, butit is enough to allow us to essentially mimic the construction of the (Lebesgue) in-tegral, at least for functions for which E [f 2(B�)] 2 L1[0; T ]. However, although theconstruction of the integral may look familiar, its behaviour is far from familiar.We �rst illustrate this by de�ning R T0 BsdBs.From classical integration theory we are used to the idea thatZ T0 f(xs)dxs = lim�(�)!0 N(�)�1Xj=0 f(xtj ) �xtj+1 � xtj� : (6)Let us de�ne the stochastic integral in the same way, that isZ T0 BsdBs = lim�(�)!0 N(�)�1Xj=0 Btj �Btj+1 � Btj� : (7)Consider again the quantity S(�) of Theorem 7.3.S(�) = N(�)Xj=1 �Btj � Btj�1�2= N(�)Xj=1 n�B2tj �B2tj�1�� 2Btj�1 �Btj � Bt;j�1�o= B2T � B20 � 2 N(�)�1Xj=0 Btj �Btj+1 � Btj� :The left hand side is T (by Theorem 7.3) and so letting �(�)! 0 and rearrangingwe obtain Z T0 BsdBs = (B2T � B20 � T )2Remark. Notice that this is not what one would have predicted from classicalintegration theory. The extra term in the stochastic integral corresponds to S(�).In equation (6), we use f(xtj ) to approximate the value of f on the interval(tj; tj+1), but in the classical theory we could equally have taken any other pointin the interval in place of tj and, in the limit, the result would have been the same.In the stochastic theory this is no longer the case. On the problem sheet you areasked to calculate two further limits



Stochastic Calculus for Finance, AME, MT 1998, Notes 331. The limit as �(�)! 0 ofN(�)�1Xj=0 Btj+1 �Btj+1 �Btj� :2. lim�(�)!0 N(�)�1Xj=0 �Btj +Btj+12 ��Btj+1 � Btj� :By choosing di�erent points within each subinterval of the partition with which toapproximate f over the subinterval we obtain di�erent integrals. The Itô integralis de�ned as Z T0 f(Bs)dBs = lim�(�)!0 N(�)Xj=1 f(Btj ) �Btj+1 � Btj� :The Stratonovich integral is de�ned asZ T0 f(Bs) � dBs = lim�(�)!0 N(�)Xj=1 �f(Btj ) + f(Btj+1)2 ��Btj+1 �Btj� :The Stratonovich integral has the advantage from the calculational point of viewthat the rules of Newtonian calculus hold good. From a modelling point of view,at least for our purposes, it is the wrong choice. To see why, think of whatis happening over an in�nitesimal time interval. We might be modelling, forexample, the value of a portfolio. We readjust our portfolio at the beginning ofthe time interval and its change in value over the in�nitesimal tick of the clock isbeyond our control. A Stratonovich model would allow us to change our modelnow on the basis of the average of the value corresponding to current stock pricesand the value corresponding to prices after the next tick. We don't have thatinformation when we make our investment decisions.Consider then the Itô integral. We have evaluated it in just one special case.We increase our repertoire in the same way as in the classical setting by �rstconsidering the value on simple functions.De�nition 7.4 A simple function is one of the formf(Bs) = nXi=1 ai(Bs)�Ii(s);where Ii = [si; si+1), [ni=1Ii = [0; T ), Ii \ Ij = f;g if i 6= j and the functions aisatisfy E [ai(Bs)2] <1.By our de�nition, Z T0 f(Bs)dBs = nXi=1 ai(Bs) �Bsi+1 �Bs� :



Stochastic Calculus for Finance, AME, MT 1998, Notes 34Now, just as for regular integration, we approximate more general functions bysimple functions and pass to a limit. We have to be sure, however, that theintegrals converge when we pass to such a limit. This will not be true for allfunctions that can be approximated by simple functions. The next Lemma helpsidentify the space of functions for which we can reasonably expect a nice limit.Lemma 7.5 Suppose that f is a simple function, then1. R t0 fs(Bs)dBs is a continuous Ft-martingale.2. E "�Z T0 f(Bs)dBs�2# = Z T0 E �f(Bs)2� ds:3. E "supt�T �Z T0 f(Bs)dBs�2# � 4 Z T0 E �f(Bs)2� ds:Remark: The second assertion is the famous Itô isometry. It suggests that weshould be able to extend our de�nition of the integral to functions such thatR t0 E [fs(Bs)2]ds < 1. Moreover, for such functions, all three assertions shouldremain true. In fact one can extend the de�nition a little further, but the integralmay then fail to be a martingale and this property will be important to us.Proof.The third assertion follows from the second by an application of a famousresult of Doob:Theorem 7.6 (Doob's inequality) If fMtg0�t�T is a continuous martingale,then E � sup0�t�T M2t � � 4E �M2T � :We omit the proof of this remarkable Theorem.We con�ne ourselves to proving the second assertion of Lemma 7.5. By ourde�nition we have Z T0 f(Bs)dBs = nXi=1 ai(Bs) �Bsi+1 �Bs� ;and soE "�Z T0 f(Bs)dBs�2# = E 24 nXi=1 ai(Bsi) �Bsi+1 � Bsi�!235= E " nXi=1 a2i (Bsi) �Bsi+1 � Bsi�2#+2E "Xi<j ai(Bsi)aj(Bsj ) �Bsi+1 � Bsi� �Bsj+1 �Bsj�# :



Stochastic Calculus for Finance, AME, MT 1998, Notes 35Suppose that j > i, thenE �ai(Bsi)aj(Bsj) �Bsi+1 � Bsi� �Bsj+1 � Bsj��= E �ai(Bsi)aj(Bsj) �Bsi+1 � Bsi� E � �Bsj+1 �Bsj���Fsj�� = 0Moreover,E ha2i (Bsi) �Bsi+1 �Bsi�2i = E ha2i (Bsi)E h �Bsi+1 � Bsi�2���Fsiii= E �a2i (Bsi)� (si+1 � si) :Substituting we obtainE "�Z T0 f(Bs)dBs�2# = nXi=1 E �a2i (Bsi)� (si+1 � si)= Z T0 E �f(Bs)2� ds: 2Notation: We writeH = ff : R+ � R ! R : Z T0 E �fs(Bs)2� ds <1g:Theorem 7.7 Let Ft denote the natural �ltration generated by Brownian motion.There exists a unique linear mapping, J, from H to the space of continuous Ft-martingales de�ned on [0; T ] such that1. If f is simple, J(f)t = Z t0 fs(Bs)dBs;2. If t � T , E �J(f)2t � = Z t0 E �fs(Bs)2� ds;3. E � sup0�t�T J(f)2t� � 4 Z T0 E �fs(Bs)2� ds:Sketch of proof:The last part follows from Doob's inequality once we know that J(f) is amartingale.The second assertion follows almost as our proof of existence of Brownianmotion. We �rst take a sequence of simple functions such thatE �Z t0 jfs � f (n)s j2ds�! 0 as n!1:



Stochastic Calculus for Finance, AME, MT 1998, Notes 36One then checks that (with probability one) the uniform limit of J(f (n)) exists on[0; T ]. (This is an easy consequence of Lemma 7.5.) 2We write J(f)t = Z t0 fs(Bs)dBs:Having made some sense of the stochastic integral, we are now in a positionto try to make sense of the chain rule for stochastic calculus.Theorem 7.8 (Itô's formula) For f such that @f@x 2 H,f(t; Bt)�f(0; B0) = Z t0 @f@x (s; Bs)dBs+Z t0 @f@s (s; Bs)ds+ 12 Z t0 @2f@x2 (s; Bs)ds:Notation: Often one writes this in di�erential notation asdft = f 0tdBt + _ftdt+ 12f 00t dt:Outline of proof:To simplify notation, suppose that _ft � 0. The formula then becomesf(Bt)� f(B0) = Z t0 @f@x (Bs)dBs + 12 Z t0 @2f@x2 (Bs)ds:Let � be a partition of [0; t] with mesh �. Thenf(Bt)� f(B0) = N(�)�1X0 �f(Btj+1)� f(Btj )� :We apply Taylor's Theorem on each interval of the partition.f(Bt)� f(B0) = N(�)�1X0 f 0(Btj ) �Btj+1 � Btj�+ 12 N(�)�1X0 f 00(Btj ) �Btj+1 � Btj�2+ 13! N(�)�1X0 f 000(�j) �Btj+1 �Btj�3for some points �j 2 [tj; tj+1]. If f 000 is uniformly bounded, then the third termtends to zero in probability (Exercise). The �rst converges to the Itô integral andthe second, by Theorem 7.3, converges to 1=2 R t0 f 00(Bs)ds. 2Example 7.9 Use Itô's formula to compute E [B4t ].Let us de�ne Zt = B4t . Then by Itô's formuladZt = 4B3t dBt + 6B2t dt;and, of course, Z0 = 0. In integrated form,Zt � Z0 = Z t0 4B3sdBs + Z t0 6B2sds:



Stochastic Calculus for Finance, AME, MT 1998, Notes 37Taking expectations, the expectation of the stochastic integral vanishes (by themartingale property) and soE [Zt ] = Z t0 6E [B2s ]ds = Z t0 6sds = 3t2: 2The most common model of stock price movements is given by geometric Brownianmotion, de�ned by St = exp (�t + �Bt) :Applying Itô's formula,� dSt = �StdBt + �� + 12�2�StdtS0 = 1:This expression is called the stochastic di�erential equation for St. It is common towrite such symbolic equations even though it is the integral equation that makessense.Writing � = � + �2=2, geometric Brownian motion is a martingale if and onlyif � = 0 and E [St ] = exp(�t).It is convenient to have a version of Itô's formula that allows us to work directlywith St (that is to write down a stochastic di�erential equation for f(St) forexample). We now know how to make our original heuristic calculations rigorous,so with a clear conscience we proceed as follows:f(St+�t)� f(St) � f 0(St) (St+�t � St) + 12f 00(St) (St+�t � St)2� f 0(St)dSt + 12f 00(St)��2S2t dB2t + �2S2t dt2 + 2��S2t dBtdt	= f 0(St)dSt + 12f 00(St)�2S2t dt:(We have used that �t(Bt+�t � Bt) = o(�t) which is usually written symbolicallyas dtdBt = 0.) As before, allowing f to also depend on t introduces an extra term_f(St)dt. Writing this version of Itô's formula in integrated form gives then:f(t; St)�f(0; S0) = Z t0 @f@x (u; Su)dSu+Z t0 @f@u(u; Su)du+12 Z t0 @2f@x2 (u; Su)�2S2udu= Z t0 @f@x (u; Su)�SudBu + Z t0 @f@x (u; Su)�Sudu+ Z t0 @f@u (u; Su)du+ 12 Z t0 @2f@x2 (u; Su)�2S2uduWarning: Be aware that the stochastic integral with respect to S will not be amartingale with respect to the probability under which Bt is a martingale exceptin the special case when � = 0. To actually calculate it is often wise to separatethe martingale part by expanding the `stochastic' integral as in the last line.It is left to the reader to justify the following more general version of Itô'sformula.



Stochastic Calculus for Finance, AME, MT 1998, Notes 38Theorem 7.10 If Yt satis�esdYt = a(Yt)dBt + b(Yt)dt;and Zt = f(t; Yt);then dZt = f 0(t; Yt)dYt + _f(t; Yt)dt+ 12f 00(t; Yt)a(Yt)2dt:Remark: Notice that Mt = Yt � Y0 � Z t0 b(Ys)dsis a martingale with mean zero. From the Itô isometry, we know that the varianceis E [M2t ] = E �Z t0 a(Ys)2ds� :The expression R t0 a(Ys)2ds is the quadratic variation of Mt, often denoted hMitor [M ]t.Suppose now that we have two stochastic di�erential equations,dYt = a(Yt)dBt + b(Yt)dt;dZt = ~a(Zt)dBt + ~b(Zt)dt:Write MYt = Z t0 a(Ys)dBsand MZt = Z t0 ~a(Zs)dBs:Then the covariance is given byE �MYt MZt � = 14E h�MYt +MZt �2 � �MYt �MZt �2i= E �Z t0 a(Ys)~a(Zs)ds�The quantity R t0 a(Ys)~a(Zs)ds, often denoted hMY ;MZit or [MYMZ ]t, is calledthe covariation of MY and MZ .Notice that M2t � hMitis an Ft-martingale and so isMYt MZt � hMY ;MZit:In this notation we have



Stochastic Calculus for Finance, AME, MT 1998, Notes 39Theorem 7.11 (Integration by parts) Let Xt = YtZt with Y; Z as above, thendXt = YtdZt + ZtdYt + dhMY ;MZit:Proof: We apply the Itô formula to (Yt + Zt)2 and Y 2t and Z2t , and subtract thesecond two from the �rst to obtainYtZt � Y0Z0 = Z t0 YsdZs + Z t0 ZsdYs + Z t0 a(Ys)~a(Zs)ds;which is the integrated form of the result. 2We now have a very large number of continuous time martingales in our hands.For any reasonable function f ,Mt = Z f(s; Bs)dBsis a martingale with respect to the Brownian probability and adapted to theBrownian �ltration. It is natural to ask if there are any others. The answer isprovided by the martingale representation theorem which says, essentially, no.Theorem 7.12 (Brownian martingale representation theorem) Let fFtg0�t�Tdenote the natural �ltration of Brownian motion. Let fMtg0�t�T be a square-integrable Ft-martingale. Then there exists an Ft-adapted process �s such thatwith probability one, Mt = M0 + Z t0 �sdBs:The process �s is essentially unique which leads, with a little work, toTheorem 7.13 (L�evy's characterisation of Brownian motion) If Mt is acontinous (local) martingale with quadratic variation hMit = t (with probabilityone), then Mt is a standard Brownian motion.We'll use this to `prove' one more important result. Recall that in the discretesetting we were able to reduce pricing options to calculating expectations once wehad found a probability measure under which the discounted stock price was amartingale. The same will be true in the continuous world, but it will no longerbe possible to �nd the martingale measure by linear algebra. The key now will beGirsanov's Theorem.Theorem 7.14 (Girsanov's Theorem) Suppose that Bt is a P-Brownian mo-tion with the natural �ltration Ft. Suppose that �t is an Ft-adapted process suchthat E �exp�12 Z T0 �2t dt�� <1:De�ne Lt = exp�� Z t0 �sdBs � 12 Z t0 �2sds�



Stochastic Calculus for Finance, AME, MT 1998, Notes 40and let P(L) be the probability measure de�ned byP(L)(A) = ZA Lt(!)P(d!):Then under the probability measure P(L), the process fWtg0�t�T , de�ned byWt = Bt + Z t0 �sds;is a standard Brownian motion.Notation: We write dP(L)dP ����Ft = Lt:(Lt is the Radon-Nikodym derivative of P(L) with respect to P.)Remarks:1. The condition E �exp�12 Z T0 �2t dt�� <1is enough to guarantee that Lt is a martingale. It is clearly positive and hasexpectation one so that P(L) really does de�ne a probability measure.2. Just as in the discrete world, two probability measures are equivalent if theyhave the same sets of probability zero. Evidently P and P(L) are equivalent.3. If we wish to calculate an expectation with respect to P(L) we haveE (L) [�t] = E [�tLt] :This will be fundamental in option pricing.Outline of proof:We have already said that Lt is a martingale. We don't prove this in full, butwe �nd supporting evidence by �nding the stochastic di�erential equation satis�edby Lt. We do this in two stages. First, de�neZt = � Z t0 �sdBs � 12 Z t0 �2sds:Then dZt = ��tdBt � 12�2t dt:Now we use Theorem 7.9 applied to Lt = exp(Zt).dLt = exp(Zt)dZt + 12 exp(Zt)�2t dt= ��t exp(Zt)dBt = ��tLtdBt:



Stochastic Calculus for Finance, AME, MT 1998, Notes 41Now we integrate by parts (using Theorem 7.10) to �nd the stochastic di�erentialequation for WtLt. Since dWt = dBt + �tdt;d(WtLt) = WtdLt + LtdWt + dhMW ;MLit= WtdLt + LtdBt + Lt�tdt� �tLtdt= (Lt � �tLtWt) dBt:Granted enough boundedness (which is guaranteed by our assumptions), WtLt isthen a martingale and has expectation zero. Thus, under the measure P(L), Wt isa martingale.Now the quadratic variation of Wt is the same as that of Bt, and we provedin Theorem 7.3 that with P-probability one, the quadratic variation of Bt is justt. Now P and P(L) are equivalent and so have the same sets of probability one.Therefore Wt also has quadratic variation t with P(L)-probability one. Finally, byL�evy's characterisation of Brownian motion (Theorem 7.12) we have that Wt is aP(L)-Brownian motion as required. 2We now try this in practiceExample 7.15 Let Xt be the drifting Brownian motion processXt = �Bt + �t;where Bt is a P-Brownian motion and � and � are constants. Then taking � =�=�, under P(L) of Theorem 7.13 we have that Wt = Bt + �t=� is a Brownianmotion, and Xt = �Wt is then a scaled Brownian motion.Notice that, for example,EP �X2t � = EP ��2B2t + 2��tBt + �2t2� = �2t+ �2t2;whereas EP(L) �X2t � = EP(L) ��2W 2t � = �2t:We are �nally in a position to describe the Black-Scholes model for option pricing.


