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Abstract

This article proves a lemma which shows that two empirical processes will be uniformly close
if they are evaluated with a small time lag. A new feature of our lemma is that we allow the
empirical processes to be functionally weighted (by fi(t), see Lemma 2). A third lemma for
functionally weighted empirical process is also included.
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1 Introduction

A lot of statistical estimators are defined as the maximizer or minimizer of a target function.

Or, upon taking derivatives, the estimators are then defined as the root of certain equations.

The explicit solution of the problem is often very difficult due to the complex nature of the target

function. An approach that proven to be successful is to approximate uniformly in t the complicated

function by some simple, usually linear or quadratic functions, at least locally in the neiborhood

of the true parameter value. And then argue that the solution of the original equation can be

approximated by the solution of the simpler equation, which is easier to solve. See e.g. Jureckova

(1969) and Koul and Basawa (1984).

In this paper, we prove a lemma that is useful in those local uniform approximation. For more

motivation and examples see Koul (198?), (1991). Lai and Ying (1990).

2 The Lemma

We prove a useful lemma on the uniform closeness of (functionally) weighted empirical distribution

functions (lemma 2) in the case of non-identically distributed random variables. The following
1Abbreviated Title: Closeness of Empirical processes.
2Technical report #330, Department of Statistics, University of Kentucky.
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lemma could be stated in triangular array with a subscript ni instead of i, but we choose not to use

triangular array to avoid unnecessary notational complications. A typical case for the weighting

constants below are |fi| ∼ 1√
n

and ξi = o( 1
logn).

Lemma 1 Let Xi, i = 1, . . . , n be independent random variables with P (Xi < t) = Ui(t) and

fi, ξi i = 1, . . . , n be arbitrary constants. If the distributions Ui are uniformly Lipschitz:

|Ui(x)− Ui(y)| ≤ C|x− y|, ∀i = 1, . . . , n x, y ∈ R1 (1)

then for those n and ε such that C
∑n
i=1 f

2
i |ξi| ≤ ε2

8 we have

P

(
sup
t

∣∣∣∣∣
n∑
i=1

fi
[
I[Xi<t] − Ui(t)− I[Xi<t+ξi] + Ui(t+ ξi)

]∣∣∣∣∣ > ε

)
≤ 16n exp

[
−ε2

32(V + ε/12 max |fi|)

]
(2)

where

V = max
1≤j≤n

f2
j + C

n∑
i=1

f2
i |ξi| .

If furthermore

max

{
max

1≤i≤n
|fi|,

n∑
i=1

f2
i |ξi|

}
= o(

1
log n

) (3)

then

sup
t

∣∣∣∣∣
n∑
i=1

fi
[
I[Xi<t] − Ui(t)− I[Xi<t+ξi] + Ui(t+ ξi)

]∣∣∣∣∣ = o(1) a.s. (4)

Proof: We first use the symmetrization lemma 2.8 of Pollard (1984) to get ride of Ui in the

probability in (2). The condition required by the symmetrization lemma, supt P (| · | > ε/2) < 1/2

is satisfied here since C
∑n
i=1 f

2
i |ξi| ≤ ε2

8 and Chebychev inequality. Thus, we have

LHS of (2) ≤ 2P

(
sup
t

∣∣∣∣∣
n∑
i=1

fi
[
I[Xi<t] − I[X∗i <t]

− I[Xi<t+ξi] + I[X∗i <t+ξi]

]∣∣∣∣∣ > ε/2

)

where X∗i are independent copies of Xi. Notice the U ′is disappeared because of symmetrization.

Next introduce auxiliary random variables, σi, independent of the Xi and X∗i , and taking value

±1 with probability 1/2. The above probability can then be bounded by

4P

(
sup
t

∣∣∣∣∣
n∑
i=1

fiσi
[
I[Xi<t] − I[Xi<t+ξi]

]∣∣∣∣∣ > ε/4

)
.

For a fixed ω, the supremum over t inside the probability is achieved at one of the 2n points:

Xi(ω)’s plus Xi(ω)−ξi’s. Therefore, the supremum over t is reduced to a maximum over 2n points.
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The probability of the maximum then is bounded by the sum:

4
∑
t=Xj

P

(∣∣∣∣∣
n∑
i=1

fiσi
[
I[Xi<t] − I[Xi<t+ξi]

]∣∣∣∣∣ > ε/4

)
+4

∑
t=Xj−ξj

P

(∣∣∣∣∣
n∑
i=1

fiσi
[
I[Xi<t] − I[Xi<t+ξi]

]∣∣∣∣∣ > ε/4

)

Now let us find a bound for the probability terms above. Notice the term fiσi
[
I[Xi<Xj ] − I[Xi<Xj+ξi]

]
has mean zero because of σi. And it has variance f2

i E(I[Xi<Xj ]− I[Xi<Xj+ξi])
2. The expectation of

the square is at most one when i = j but in all other cases (i 6= j) is equal to Ui(Xj)−Ui(Xj + ξi)

which by our Lipchitz assumption is bounded by C|ξi|. Similar mean and variance calculations

hold for the terms in the second sum where t = Xj − ξj . Therefore we can bound the variance of

the summation term inside the probability by
n∑
i=1

f2
i E(I[Xi<Xj ] − I[Xi<Xj+ξi])

2 ≤ max f2
j +

n∑
i=1

f2
i C|ξi| = V

By Bernstein’s inequality (cf. Pollard, 1984, pp. 193), each of the probability term above is then

bounded by

2 exp
[
−ε2/32

(
V +

1
3
ε

4
max |fi|

)]
Since the above bound is independent of i, (2) will follow if we apply the bound to every term in

the sum.

If (3) hold, we see that

32(V +
ε

12
max |fi|) = o(1/ log n)

This makes the bound (2) so small that it sum to a finite number (when ε is fixed). By Borel-Cantelli

lemma, it implies (4). �

When the weighting sequence fi are themselves functions of t, fi(t), we have similar results. We

need to impose the bounded variation requirement on the fi(t). Denote, for an arbitrary function

g(t), ‖g(t)‖ = supt |g(t)|.

Lemma 2 Let Xi, i = 1, . . . , n be independent random variables with P (Xi < t) = Ui(t) and

ξi i = 1, . . . , n be arbitrary constants. Suppose the distributions Ui are uniformly Lipschitz:

|Ui(x)− Ui(y)| ≤ C|x− y|, ∀i = 1, . . . , n x, y ∈ R1 . (5)

If fi(t) are functions of bounded variation of t with total variation V∞−∞fi(t) ≤ K < ∞, with K

independent of i, then for those ε > 0 and n such that ‖C
∑n
i=1 f

2
i (t)|ξi|‖ ≤ ε2

2 we have

P

(∥∥∥∥∥
n∑
i=1

fi(t)
[
I[Xi<t] − Ui(t)− I[Xi<t+ξi] + Ui(t+ ξi)

]∥∥∥∥∥ > ε

)
≤ 16Cε(n) exp

(
−ε2

128(V + ε/24 max ‖fi‖)

)
(6)
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where Cε(n) = 16K
ε n2 + 2n and

V = max
j
‖f2
j (t)‖+ C

n∑
i=1

‖f2
i (t)‖|ξi| .

If furthermore,

max

{
max

1≤i≤n
‖fi(t)‖,

n∑
i=1

‖f2
i (t)‖|ξi|

}
= o(

1
log n

) (7)

then

sup
t

∣∣∣∣∣
n∑
i=1

fi(t)
[
I[Xi<t] − Ui(t)− I[Xi<t+ξi] + Ui(t+ ξi)

]∣∣∣∣∣ = o(1) a.s. (8)

Proof: The same symmetrization argument in the above proof of Lemma 1 still work here and

leads to

P

(∥∥∥∥∥
n∑
i=1

fi(t)
[
I[Xi<t] − Ui(t)− I[Xi<t+ξi] + U(t+ ξi)

]∥∥∥∥∥ > ε

)
≤

4P

(∥∥∥∥∥
n∑
i=1

fi(t)σi
[
I[Xi<t] − I[Xi<t+ξi]

]∥∥∥∥∥ > ε

4

)
. (9)

Since the fi are now functions of t, it is not enough to merely check the 2n points for the supremum

over t as before.

But we can check 16K
ε n2 additional points of t to make sure that we reach within ε

8 of the

supremum. The reason is as follows. Since f1(t) is of bounded variation, for any ε > 0, we can

choose no more than 82K
ε n points on the line such that f1(t) varies by no more than ε

8n in any

of the intervals between consecutive points. This can most easily be seen by writing f1(t) as the

difference of two increasing functions. Do the same thing with the other fi(t) to get a total of no

more than n × 16K
ε n = 16K

ε n2 points on the real line. Within each of the two consecutive points,

each and every fi(t) do not vary by more than ε
8n and thus

∑n
i=1 fi(t) does not vary by more than∑n

i=1
ε

8n = ε
8 within any interval. Therefore for each fixed ω, by checking those points in additional

to the 2n points as in lemma one, we will definitely find a maximum that is at most ε/8 shy of the

supremum.

Thus

4P

(
sup
t

∣∣∣∣∣
n∑
i=1

fi(t)σi
[
I[Xi<t] − I[Xi<t+ξi]

]∣∣∣∣∣ > ε

4

)
≤ 4P

(
max
tj

∣∣∣∣∣
n∑
i=1

fi(tj)σi
[
I[Xi<tj ] − I[Xi<tj+ξi]

]∣∣∣∣∣ > ε

8

)

≤ 4
∑
t=tj

P

(∣∣∣∣∣
n∑
i=1

fi(tj)σi
[
I[Xi<tj ] − I[Xi<tj+ξi]

]∣∣∣∣∣ > ε

8

)
(10)
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where 2n of the points tj are random as in Lemma 1 (Xj(ω) and Xj(ω)− ξi’s) while the rest of the

points are nonrandom, depending only on the function fi. The variance bound V is still valid for

those nonrandom choice of t’s. Same application of the Bernstein’s inequality (cf. Pollard, 1984,

pp. 193) will finish the proof. �

If we further suppose that V + max ‖fi‖ = O(1/
√
n) then the result of (4) can be strengthened

to give an order. For instance, (4) = o(log n/n1/4) a.s..

The following lemma deals with the case where weights are functions but involves only one

empirical process (no time lag). It can be proved similarly to Lemma 2. We used this Lemma in

the study of the stratified Cox model with number of strata go to infinity.

Lemma 3 Let Xi, i = 1, · · · , n be independent random variables and fi(t), i = 1, · · · , n be

nonrandom functions of bounded variation. Assume the total variation for each fi(t) is bounded

by K: V∞−∞fi(t) ≤ K.

Then for those n and ε > 0 such that ‖
∑n
i=1 f

2
i (t)‖ ≤ ε2/2, we have

P
(∥∥∥∑ fi(t)[I[Xi<t] − P (Xi < t)]

∥∥∥ > ε
)
≤ 16Cε(n) exp

[
− ε2

128(Vn + εmaxi ‖fi(t)‖/24)

]
where Cε(n) = 16K

ε n2 + 2n and Vn =
∑n
i=1 ‖f2

i (t)‖.

Furthermore if max{Vn,max ‖fi(t)‖} = o(1/ log n) then

sup
t

∣∣∣∣∣
n∑
i=1

fi(t)[I[Xi<t] − P (Xi < t)]

∣∣∣∣∣ = o(1) a.s.

A typical case where this lemma is useful is when ‖fi(t)‖ = O(n−s) for s > 1/2.
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