An Overview of the Luria-Delbrück Distribution

Qi Zheng

School of Rural Public Health Texas A\&M Health Science Center
College Station, Texas

TWhere did the Luria-Delbrück distribution come from?

- in the 1940s, bacteria were believed to be different
- crucial issue: is bacterial mutation pre-adaptive or post-adaptive
- Luria (Watson's advisor) was preoccupied with this issue
- A solution was conceived at a faculty dance at Indiana Univ, while Luria was watching a slot machine
- see page 75 of A Slot Machine, A Broken Test Tube

TWhat is a fluctuation experiment?

- let bacteria grow in a liquid culture (incubation)
- transfer the contents of a tube to a solid culture (plating)

- Tno models, no estimation of mutation rates

- first model proposed by Luria and Delbrück (1943), and modified by Lea and Coulson (1949)
- But the following illustrates the salient features

TWhat's the major obstacle?

- p.g.f for the L-C model (1949)

$$
G(z ; m, \phi)=\exp \left\{\frac{m}{\phi}\left(\frac{1}{z}-1\right) \log (1-\phi z)\right\}
$$

where $\phi=1-e^{-\beta T}<1$ with β denoting cellular birth rate.
ar Ma. et al. (1993) improved the L-C method, proposing a recursive algorithm

$$
\begin{aligned}
& p(0 ; m, \phi)=e^{-m} \\
& p(k ; m, \phi)=\frac{m}{k} \sum_{j=1}^{k} \phi^{j-1}\left(1-\frac{j \phi}{j+1}\right) p(k-j ; m, \phi) \quad(k \geq 1)
\end{aligned}
$$

- How to make point and interval estimation of m ?

【A solution came rather unexpectedly (2005)

- Just differentiate the p.g.f.!

$$
\frac{\partial^{i} G}{\partial m^{i}}=\left[\frac{1}{\phi}\left(\frac{1}{z}-1\right) \log (1-\phi z)\right]^{i} \exp \left[\frac{m}{\phi}\left(\frac{1}{z}-1\right) \log (1-\phi z)\right]
$$

- which gives us the useful relation

$$
\sum_{k=0}^{\infty} \frac{\partial^{i} p(k ; m, \phi)}{\partial m^{i}} z^{k}=\left(\sum_{k=0}^{\infty} h_{k} z^{k}\right)^{i}\left(\sum_{k=0}^{\infty} p(k ; m, \phi) z^{k}\right)
$$

with

$$
\left.\begin{array}{l}
h_{0}=-1 \\
h_{k}=\phi^{k-1}\left(\frac{1}{k}-\frac{\phi}{k+1}\right) \quad(k \geq 1)
\end{array}\right\} .
$$

- a feasible algorithm for derivatives

$$
\left.\begin{array}{l}
p^{(1)}(k ; m, \phi)=h_{k} * p(k ; m, \phi) \\
p^{(2)}(k ; m, \phi)=h_{k} * p^{(1)}(k ; m, \phi)
\end{array}\right\} .
$$

- a statistician's old friend

$$
\left.\begin{array}{l}
U(m, \phi ; X)=\frac{\partial l}{\partial m}=\sum_{i=1}^{n} \frac{p^{(1)}\left(X_{i} ; m, \phi\right)}{p\left(X_{i} ; m, \phi\right)} \\
J(m, \phi ; X)=-\frac{\partial^{2} l}{\partial m^{2}}=\sum_{i=1}^{n}\left[\left(\frac{p^{(1)}\left(X_{i} ; m, \phi\right)}{p\left(X_{i} ; m, \phi\right)}\right)^{2}-\frac{p^{(2)}\left(X_{i} ; m, \phi\right)}{p\left(X_{i} ; m, \phi\right)}\right]
\end{array}\right\} .
$$

- what an easy job to do point and interval estimation, e.g.

$$
\tilde{m}_{k+1}=\tilde{m}_{k}+\frac{U\left(\tilde{m}_{k}, \phi ; X\right)}{J\left(\tilde{m}_{k}, \phi ; X\right)} .
$$

TThis simple idea can be reused, many times

- Bartlett derived another p.g.f., for a completely-random model

$$
G(z ; \alpha, \phi)=\left[\frac{(1-\phi) z}{1-\phi z-(1-z)(1-\phi z)^{\alpha}}\right]^{N_{0}}
$$

$\infty \quad \alpha$, the mutation rate can be similarly estimated

Tasymptotically, the two models are equivalent (2007)

- if $X \sim L D(m, \phi)$, then

$$
\operatorname{Pr}(X=n) \sim \frac{\phi^{n}}{\Gamma\left(\frac{1-\phi}{\phi} m\right)} \frac{1}{n^{1-m(1-\phi) / \phi}}
$$

- - if $Y \sim B(\alpha, \phi)$ with $N_{0}=k$ initial nonmutant cells

$$
\operatorname{Pr}(Y=n) \sim \frac{\phi^{n}}{\Gamma(k \alpha)} \frac{1}{n^{1-k \alpha}} .
$$

- if $m=\frac{\alpha \phi}{1-\phi} N_{0}$, then

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{Pr}(X=n)}{\operatorname{Pr}(Y=n)}=1
$$

TWith Haldane's model, we don't even have a p.g.f.

- To find $p(g ; k)$, Haldane suggested finding g integers, $a_{0}, a_{1}, \ldots, a_{g-1}$, such that

$$
k=a_{0} 2^{0}+a_{1} 2^{1}+\ldots+a_{g-1} 2^{g-1}
$$

- actually, some constraints must be imposed.

$$
a_{i} \leq 2^{g-1-i}-\sum_{k=1}^{g-1-i} 2^{g-1-i-k} a_{g-k} \stackrel{\text { def }}{=} a_{i}^{*}(i=0, \ldots, g-1)
$$

- example: if $g=6$ and $k=45$, we have 89134 partitions to consider; only 524 of them satisfy the first condition, and only 374 satisfy both conditions.

『Haldane's manuscript was unearthed in 1991
the coefframe of t^{x} in the exsiensen of
$\frac{1}{(1-x)\left(1-t^{2}\right)\left(1-t^{4}\right)\left(1-t^{8}\right) \cdots}$ in ascending porwers of t. Each parlition represents a set of mulations which could guverese ì x mulants. This $5^{2}=2^{2}+1=2(2)+1=2+3(1)=5(1)$. The paltern cornespondmy ti rach of these parilitions is shom- in Fry', muitat cills bumy reprisewied ly bleck, and nor mall by otem circles.

Conseder the pe mulations representè by the perstition $2+3$ (1). Ore mulatin occured in one of the $\frac{1}{4} \mathrm{~N}$ dursions of the pemultimate sct . The probablity of suct on chent is $m . \frac{1}{4} N$, or $\frac{1}{2} g$. Thocel took place in the $\frac{1}{2} N$ dursom of the lust soie. Tis probalilite is $\frac{1}{21} m^{3} \cdot \frac{1}{2} N(N N-1)\left(\frac{1}{2} N-2\right)$,

* currently archived by University College London

TThe same idea works even when we don't have a p.g.f. (2006)

- from the Markovian property of the process, we have

$$
\begin{aligned}
& p(g+1 ; k)=\sum_{j=\max \left(0, k-N_{g}\right)}^{\lfloor k / 2\rfloor} P\left(Y_{g+1}=k \mid Y_{g}=j\right) p(g ; j) \\
= & \sum_{j=\max \left(0, k-N_{g}\right)}^{\lfloor k / 2\rfloor}\binom{N_{g}-j}{k-2 j} \mu^{k-2 j}(1-\mu)^{N_{g}-k+j} p(g ; j)
\end{aligned}
$$

- this simplifies computation of the probability mass function
- this allows derivatives to be computed
- this allows the implementation of the Newton-Raphson

Tan example

- in Demerec's experiment: $N_{0}=90$ and $N_{T}=1.9 \times 10^{8}$.
- thus, $\phi=1-90 /\left(1.9 \times 10^{8}\right)$ and $g \approx 21$.
- data from Proc. Natl. Acad. Sci. USA 31:16-24 (1945).

33	18	839	47	13	126	48	80	9	71
196	66	28	17	27	37	126	33	12	44
28	67	730	168	44	50	583	23	17	24

- Lea \& Coulson: $\hat{\mu}_{\beta}=5.71 \times 10^{-8}$ and an asymptotic $95 \% \mathrm{CI}$, $\left(4.55 \times 10^{-8}, 6.94 \times 10^{-8}\right)$
- Bartlett: $\hat{\alpha}=5.78 \times 10^{-8} \mathrm{CI}=\left(4.58 \times 10^{-8}, 7.07 \times 10^{-8}\right)$
- Haldane: $\hat{\mu}=7.14 \times 10^{-8} \mathrm{CI}=\left(5.94 \times 10^{-8}, 8.39 \times 10^{-8}\right)$

【Latest developments

- if X is thinned by a "thinning" probability ε, the distribution is

$$
G_{Y}(z)=\exp \left(m \xi \frac{(1-z) \log [\varepsilon(1-z)]}{1+\xi z}\right)
$$

where

$$
\xi=\frac{\varepsilon}{1-\varepsilon}
$$

- if we take an appropriate limiting process, the distribution is

$$
G(z ; A, k)=\left(\frac{1}{1-A\left(z^{-1}-1\right) \log (1-z)}\right)^{k}
$$

【Does there exist another formulation?
J.F. Crow, Genetics 124:207-211 (1990)

Taking advantage of my newly formed acquaintance with Fisher, I asked him how to find the distribution of mutant cells ... He leaned back in his chair, thought for perphas a minute, and wrote a generating function ... I took the paper ... and then managed to lose it.

