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¶Where did the Luria-Delbrück distribution come from?

• in the 1940s, bacteria were believed to be different

• crucial issue: is bacterial mutation pre-adaptive or post-adaptive

• Luria (Watson’s advisor) was preoccupied with this issue

• A solution was conceived at a faculty dance at Indiana Univ,
while Luria was watching a slot machine

• see page 75 of A Slot Machine, A Broken Test Tube
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¶What is a fluctuation experiment?

• let bacteria grow in a liquid culture (incubation)

• transfer the contents of a tube to a solid culture (plating)
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¶no models, no estimation of mutation rates

• first model proposed by Luria and Delbrück (1943), and mod-
ified by Lea and Coulson (1949)

• But the following illustrates the salient features
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¶What’s the major obstacle?

• p.g.f for the L-C model (1949)

G(z; m, φ) = exp

{
m

φ

(
1

z
− 1

)
log(1− φz)

}
where φ = 1− e−βT < 1 with β denoting cellular birth rate.

•Ma. et al. (1993) improved the L-C method, proposing a
recursive algorithm

p(0; m, φ) = e−m

p(k; m, φ) =
m

k

k∑
j=1

φj−1
(

1− jφ

j + 1

)
p(k − j; m, φ) (k ≥ 1)

• How to make point and interval estimation of m?
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¶A solution came rather unexpectedly (2005)

• Just differentiate the p.g.f.!!

∂iG

∂mi
=

[
1

φ

(
1

z
− 1

)
log(1− φz)

]i

exp

[
m

φ

(
1

z
− 1

)
log(1− φz)

]
.

• which gives us the useful relation

∞∑
k=0

∂ip(k; m, φ)

∂mi
zk =

 ∞∑
k=0

hkz
k

i  ∞∑
k=0

p(k; m, φ)zk


with

h0 = −1

hk = φk−1
(

1

k
− φ

k + 1

)
(k ≥ 1)

 .

6



¶Now Newton-Raphson could be implemented

• a feasible algorithm for derivatives

p(1)(k; m, φ) = hk ∗ p(k; m, φ)

p(2)(k; m, φ) = hk ∗ p(1)(k; m, φ)

}
.

• a statistician’s old friend

U(m, φ; X) =
∂l

∂m
=

n∑
i=1

p(1)(Xi; m, φ)

p(Xi; m, φ)

J(m, φ; X) = − ∂2l

∂m2
=

n∑
i=1

[(
p(1)(Xi; m, φ)

p(Xi; m, φ)

)2

− p(2)(Xi; m, φ)

p(Xi; m, φ)

]
 .

• what an easy job to do point and interval estimation, e.g.

m̃k+1 = m̃k +
U(m̃k, φ; X)

J(m̃k, φ; X)
.
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¶This simple idea can be reused, many times

• Bartlett derived another p.g.f., for a completely-random model

G(z; α, φ) =

[
(1− φ)z

1− φz − (1− z)(1− φz)α

]N0

• α, the mutation rate can be similarly estimated
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¶asymptotically, the two models are equivalent (2007)

• if X ∼ LD(m, φ), then

Pr(X = n) ∼ φn

Γ
(

1−φ
φ m

) 1

n1−m(1−φ)/φ
.

• if Y ∼ B(α, φ) with N0 = k initial nonmutant cells

Pr(Y = n) ∼ φn

Γ(kα)

1

n1−kα
.

• if m = αφ
1−φN0, then

lim
n→∞

Pr(X = n)

Pr(Y = n)
= 1
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¶With Haldane’s model, we don’t even have a p.g.f.

• To find p(g; k), Haldane suggested finding g integers,
a0, a1, . . . , ag−1, such that

k = a02
0 + a12

1 + . . . + ag−12
g−1

• actually, some constraints must be imposed.

ai ≤ 2g−1−i−
g−1−i∑
k=1

2g−1−i−kag−k
def
= a∗i (i = 0, . . . , g− 1)

• example: if g = 6 and k = 45, we have 89134 partitions to
consider; only 524 of them satisfy the first condition, and only
374 satisfy both conditions.
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¶Haldane’s manuscript was unearthed in 1991

∗ currently archived by University College London
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¶The same idea works even when we don’t have a p.g.f. (2006)

• from the Markovian property of the process, we have

p(g + 1; k) =

bk/2c∑
j=max(0,k−Ng)

P (Yg+1 = k|Yg = j)p(g; j)

=

bk/2c∑
j=max(0,k−Ng)

(
Ng − j

k − 2j

)
µk−2j(1− µ)Ng−k+jp(g; j)

• this simplifies computation of the probability mass function

• this allows derivatives to be computed

• this allows the implementation of the Newton-Raphson
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¶an example

• in Demerec’s experiment: N0 = 90 and NT = 1.9× 108.

• thus, φ = 1− 90/(1.9× 108) and g ≈ 21.

• data from Proc. Natl. Acad. Sci. USA 31:16-24 (1945).

33 18 839 47 13 126 48 80 9 71
196 66 28 17 27 37 126 33 12 44
28 67 730 168 44 50 583 23 17 24

• Lea & Coulson: µ̂β = 5.71×10−8 and an asymptotic 95% CI,

(4.55× 10−8, 6.94× 10−8)

• Bartlett: α̂ = 5.78× 10−8 CI=(4.58× 10−8, 7.07× 10−8)

• Haldane: µ̂ = 7.14× 10−8 CI=(5.94× 10−8, 8.39× 10−8)

13



¶Latest developments

• if X is thinned by a “thinning” probability ε, the distribution
is

GY (z) = exp

(
mξ

(1− z) log[ε(1− z)]

1 + ξz

)
where

ξ =
ε

1− ε

• if we take an appropriate limiting process, the distribution is

G(z; A, k) =

(
1

1− A(z−1 − 1) log(1− z)

)k
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¶Does there exist another formulation?

J.F. Crow, Genetics 124:207-211 (1990)

Taking advantage of my newly formed acquaintance with
Fisher, I asked him how to find the distribution of mutant
cells ... He leaned back in his chair, thought for perphas
a minute, and wrote a generating function ... I took the
paper ... and then managed to lose it.
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