Lecture 10: Powers of sin and cos

e Integrating non-negative powers of sin and cos.

The goal.

In this section, we learn how to evaluate integrals of the form
/ sin” x cos™ x dx.

The procedure will depend on several familiar trigonometric identities.
and the double angle formula for cosz,

Case 1. One of m or n is odd.

Let us suppose that m = 2k + 1 is odd. In this case, we rely on the Pythagorean
identity,
sinz + cos’xr = 1

which allows to rewrite the integral

/ sin?**t1 ¢ cos™ x dx.

as
/sin (1 — cos® 2)* cos™ x da.

This is sort of a mess, but you should be able to see that the substitution u = cosx
will reduce this to evaluating the integral of a polynomial.

Ezercise. How does the procedure differ in n is odd and m is even?
This will be clear if we try an example.

Example. Find the indefinite integral

/ sin® z cos® = dz.



Solution. Since both exponents are odd, there are at least two ways to evaluate the
integral. We choose to rewrite cos?z as 1 — sin?z and then substitute u = sinz,
du = cosx dx. This gives

/sin?’xcos?’xdx = /sin3x(1 — sin®z) cos v dx

= /u3(1 —u?) du
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Case 2. Both exponents are even.

For this case, we rely on the double-angle formula for cos.
cos(2z) = 2cos’z —1 (1)
= 1-—2sin’z. (2)

In fact, we will take these two forms and solve them for cos? z and sin® z, respectively.
This gives us the formulae
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cos’r = y (3)
1-— 2

sinfz = # (4)

Many of you will recognize these as the half-angle formula.
To make use of these formulae, we will start with an integral of the form

/ sin* x cos® x dx
If we substitute the formulae (3) (4), we end up with

1— 2 ,
/(%)k(ﬂ’acl + cos 222)’ dx.

If we multiply out the powers, we obtain an expression involving sin 2z and cos2x
which is of LOWER DEGREE. If we repeatedly use this trick, we end up with terms
that we can treat by the method of case 1.

Again, an example.



Ezrample. Evaluate
2
/ sin? z dz.
0

Solution. We first find an anti-derivative. Using the double-angle formula (4) we

have ] 5
/sin2xdx = /ydm.

This integral is comparatively easy to evaluate

1 —cos2x r  sin2x
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Some of you may wish to use the substitution u = 2z. Now we make use of the

.9 r  sin2x
dr = — — C.
/sm T dx 5 1 +
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anti-derivative

to evaluate the definite integral.
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Exercise.  Compute the integrals

/SinQZECOSQCL’dZL‘ /Sin5xdm /tanxsechdx /tanxdm.

We close with an example which illustrates where such integrals arise in nature.

Ezxample. The voltage of an alternating electric current might have the form
V(t) = Asin(wt).

Because the voltage changes over time, it is not clear how to assign a single number
that represents the voltage of this current. For example, the 110 volt current in our
houses is actually an alternating current where the voltage may reach as high as 155
volts.

A standard way of assigning a single voltage to V' is to take the root-mean-square
voltage. This means, square V', take mean or average over one period and then take
the square root. This gives
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a) Compute RMS. b) Show that if A is 155, then RM S is about 110.



Solution. A short calculation shows

RMS = A/\2

An even shorter calculation shows 155/ V2 is about 109.6.



